

	II : PART - B	90			
	UNIT - I	18			
2 a.	i) Define group velocity and Particle velocity.	2	L1,3	CO1,4	PO1
	ii) Derive an expression for de-Broglie wavelength using group velocity.	7	1,5	001,4	101
b.	i) Define Eigen functions.	2	L1,3	CO1,3	PO1
	ii) Set up one dimensional time independent Schrodinger's wave equation.	7			
c.	i) What are the assumptions of Planck's law of radiation?	4			
	ii) An electron has a speed of 300 m/s accurate to 0.01% with what	5	L1,3	CO1,5	PO1,2
	fundamental accuracy can locate the position of the electron?	5			
	UNIT - II	18			
3 a.	i) Define Young's modulus, Bulk modulus and Rigidity modulus.	3	L1,3	CO1,4	PO1
	ii) Derive the relation between elastic constants q , k , n and σ .	6			
b.	Define dielectric material and explain briefly the four types of dielectric	0	112	CO1 3	PO1

P21PH202			Page No 2			
c.	i) Derive Clausius-Mossotti relation for a dielectric material.	6				
	ii) Calculate the couple per twist of a wire of length 0.3 m, and radius			~~~~		
	0.2×10^{-3} m when a torque of 5×10^{-4} Nm is applied, if the rigidity	3	L3	CO5	PO2,1	
	modulus of the material is $8 \times 10^{10} \text{ N/m}^2$.					
	UNIT - III	18				
4 a.	Define density of states and obtain an expression for it in solids.	9	L1,3	CO1,3	PO1	
b.	i) What are conduction electrons?	1				
	ii) Derive an expression for concentration of electrons in an intrinsic	8	L1,3	CO3	PO1	
	semiconductor.					
c.	i) Show the relation between Fermi energy and energy gap for an intrinsic	5				
	semiconductor.	-	L3,2	CO5	PO2,1	
	ii) The free electron density of aluminium is 18.10×10^{28} m ⁻³ . Calculate its	4	,_		,-	
	Fermi energy at 0 K.	·				
5 -	UNIT - IV	18				
5 a.	i) With a neat diagram, discuss the process of Induced Absorption.	3	100	GO2 A	DO1	
	ii) Obtain an expression for energy density of radiation under equilibrium	6	L2,3	CO2,3	PO1	
1	condition in terms of Einstein's coefficients.					
b.	Define optical fiber. Obtain the expression for angle of acceptance and	9	L1,3	CO1,3	PO1	
	numerical aperture.					
c.	i) Calculate the ratio of Einstein's coefficient for a system in thermal					
	equilibrium at 300 K in which radiations of wavelength 1.3 µm are	4				
	emitted.		L3	CO4	PO1,2	
	ii) Calculate the numerical aperture and angle of acceptance of a given					
	optical fiber if the refractive indices of the core and cladding are	5				
	1.563 and 1.498 respectively.					
6 a.	i) Define absorption, reverberation and time of reverberation.	18 3				
	ii) With a neat diagram, explain the measurement of ultrasonic velocity in	-	L1,2	CO1,2	PO1	
	a liquid.	6	,	,		
b.	What are shock waves? Explain the construction and working of Reddy	0				
	shock tube.	9	L1,2	CO1,2	PO1	
c.	i) Mention the basic requirements of the acoustics of building.	4				
	ii) The distance between two pressure sensors in a shock tube is 100 mm.					
	The time taken by a shock wave to travel this distance is 200 μ s. If the	5	L2,3	CO1,4	PO1	
	velocity of sound under the same condition is 340 m/s. Find the Mach	3				
	number and Mach angle of the shock wave.					