Р	17ME44						Pag	ge N	o 1
	U.S.N								
-	P.E.S. College of Engineering, (An Autonomous Institution affiliated Fourth Semester, B. E Mechan Semester End Examination; Mechanics of Mater	<i>d to V</i> nical Augu	<i>'TU</i> , Engi	<i>Bela</i> nee	agav ering 3	i) g		_	
	Sime: 3 hrs		C	1			. Mai	rks:	100
1	ote: Answer FIVE full questions, selecting ONE full que UNIT - I	stion	from e	eacn	unit.				
a.	Explain stress-stain curve for ductile material.								
b .	Derive an expression for change in length of a uniform	nly ta	pering	rec	tangu	ılar	bar si	ıbjec	ted
	to an axial force.				U			5	
	OR								
a.	Explain the thermal stress in composite bars.								
b.	Explain stress analysis of composite bars.								
	UNIT - II								
a.	A compound bar of length 500 mm consists of a strip thick and a strip of steel 50 mm wide \times 15 mm thick								
	subjected to a load of 50 kN, find the stresses developed the bar. Take elastic modulus of aluminium and steel a respectively.								
b .	A rectangular bar is subjected to a direct stress (σ) in σ	one pl	ane o	nly.	Prov	e th	at the	norr	nal
	stress on oblique plane is given by $\sigma_n = \sigma Cos^2 \theta$.								
	OR								
1.	Write a note on Mohr's circle of stresses.								
	UNIT - III								
a.	Explain the different types of loads acting on a beam.								
5.	Derive the relationship between load intensity, shear for	ce and	d benc	ling	mom	nent			
	OR								
a.	Draw shear force and bending moment diagram for a ca	ntilev	er of	leng	th 'L	' ca	rrying	g a po	oint
	load at the free end and define point of contra-flexure								
b.	Draw SFD and BMD for simply supported beam with p	oint lo	oad at	cent	tre of	bea	.m.		
	UNIT - IV				-				
a.	Derive the relation between bending moment, bending s							-	
).	A rectangular beam 100 mm wide and 250 mm deep is	s subje	ected	to a	maxi	Imu	m she	er fo	rce
	of 50 kN. Determine;								
	 i) Average shear stress ii) Maximum shear stress 								
	ii) Maximum shear stress						Co	ontd.	2

P17ME44

OR

8.	Derive an expression for maximum deflection and slope for a simply supported beam	20	
	subjected to central concentrated load using Macaulay's method.	20	
	UNIT - V		

9 a.	Derive Torsional equations and state assumptions.	10
b.	Explain limitations of Euler's formula and explain Rankine's formula.	10
	OR	

10. Derive an expression for crippling load, when both ends of the column are hinged. 20

* * * *