

Page No... 1

The Students will be able to:

CO1: Ability to identify various mechanisms, create inversions of planar four bar chain and calculate degrees of freedom of mechanisms.

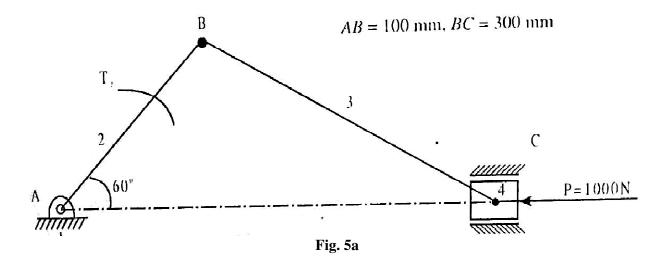
Course Outcomes

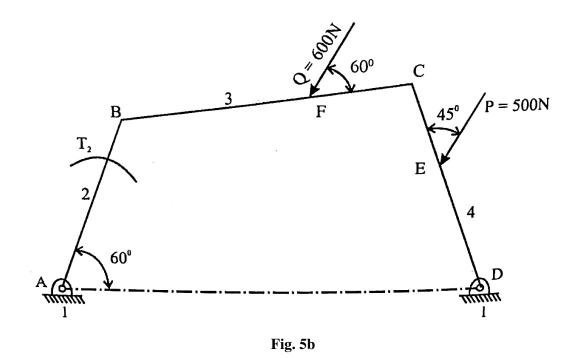
- CO2: Ability to analyze velocity of simple planar mechanisms using graphical methods.
- *CO3:* Ability to design cam profiles for different follower motions and determine kinematic characteristics of the follower and explain working principle of Governors
- CO4: Analyze graphically the static forces acting in different links of simple planar mechanisms.
- CO5: Determine the magnitude and location of balancing masses for the rotating machines and Reciprocating machines.

<u>Note</u>: I) PART - A is compulsory. Two marks for each question. II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

Q. No.	Questions		Marks	BLs	COs	POs
	I:PART - A	A	10			
1 a.	Define Mechanism.		2	L1	CO1	PO1,2
b.	What is Angular velocity?		2	L1	CO2	PO1,2
с.	List Application of Cams.		2	L1	CO3	PO1,2
d.	What is the condition of Equilibrium when forces?	n a member subjected with two	2	L1	CO4	PO1,2
e.	Why balancing is necessary?		2	L1	CO5	PO1,2
	II : PART -	B	90			
2 a.	UNIT - I Define;		18			
	i) Kinematic Link ii) Kiner	natic Pair hine and Structure.	9	L1	CO1	PO2
b.	With neat sketch, explain;i) Beam Engineii) Coup	ling rod of locomotive	9	L1	CO1	PO2
c.	With neat sketch, explain crank and slot mechanism.	ted lever quick return motion	9	L1	CO1	PO2
	UNIT - II		18			
3 a.	Locate all the instantaneous centers of the shown in Fig. 3a. The lengths of crank C					
	100 mm and 400 mm respectively. If the c angular velocity of 10 rad/s, find; i) V ii) Angular velocity of the connecting rod.	erank rotates clockwise with an Velocity of the slider A and	12	L2	CO2	PO2

Contd... 2


P18AU43			Page No 2		
b.	A pin jointed four bar Mechanism ABCD, Link AB = 150 mm,				
	BC= 180 mm, CD = 180 mm and the fixed link AD = 300 mm. Link AB				
	makes 60° with the link AD, and rotates uniformly at 100 rpm. Locate all	12	L2 CO2 PO2		
	the instantaneous centres and find the angular velocity of link BC and the				
	linear velocity of link CD.				
c.	Explain different types of instantaneous.	6	L1 CO2 PO1		
	UNIT - III	18			
4 a.	A cam is to be designed for a knife edge follower with the				
	following data:				
	i) Cam lift 40 mm during 90° of cam rotation with simple harmonic				
	motion				
	ii) Dwell for the next 30°				
	iii) During the next 60° of cam rotation, the follower returns to its	14	L2 CO3 PO2		
	original position with simple harmonic motion				
	iv) Dwell during the remaining 180°				
	Draw the profile of the cam when (I) the line of stroke of the follower				
	passes through the axis of the cam shaft, The radius of the base circle of				
	the cam is 40 mm.				
b.	A Porter governor has equal arms each 250 mm long and pivoted on the				
	axis of rotation. Each ball has a mass of 5 kg and the mass of the central				
	load on the sleeve is 15 kg. The radius of rotation of the ball is 150 mm	14	L2 CO3 PO2		
	when the governor begins to lift and 200 mm when the governor is at	11	12 005 102		
	maximum speed. Find the minimum and maximum speeds and range of				
	speed of the governor.				
с.	Explain different types of followers.	4	L1 CO3 PO1,2		
	UNIT - IV	18			
5 a.	A slider crank mechanism is shown in Fig. 5a. The force applied to the				
	piston is 1000 N when the crank is at 60" from IDC. Calculate the	14	L2 CO4 PO2		
	driving torque T.				
b.	A four bar mechanism under the action of two external forces is shown				
	in Fig. 5b. Determine the torque to be applied on the link AB for static	14	L2 CO4 PO2		
	equilibrium. The dimensions of the links are $AB = 50 \text{ mm}$, $BC = 66 \text{ mm}$,				
	$CD = 55 \text{ mm}$, $CE = 25 \text{ mm}$, $CF = 30 \text{ mm}$, $BAD = 60^{\circ}$ and $AD = 100 \text{ mm}$				
с.	Explain Law of superposition.	4	L1 CO4 PO1		


Contd... 3

P18AU43			Page No 3		
	UNIT - V	18			
6 a.	Four masses $M_1 = 100$ kg; $M_2 = 175$ kg; $M_3 = 200$ kg and $M_4 = 125$ kg				
	are fixed to the crank of 200 mm radius and revolve in planes 1, 2, 3 and		L2	CO5	PO2
	4 respectively. The angular position of the planes 2, 3 and 4 with respect				
	to 1 are 75°, 135° and 240° taken in the same sense. Distances of the	14			
	planes 2, 3 and 4 from 1 are 600 mm, 1800 mm and 2400 mm.	14			
	Determine the magnitude and position of the balancing masses at radius				
	600 mm in planes 'L' and 'M' located in the middle of 1 and 2 and in the				
	middle of 3 and 4 respectively.				
b.	The pistons of a 4 cylinder vertical inline engine reach their uppermost				
	position at 90° interval in order of their axial position. Pitch of		T 0	CO5	PO2
	cylinder = 0.35 m. Crank radius = 0.12 m, length of C.R = 0.42 m. The	14			
	engine runs at 600 rpm. If the reciprocating part of each engine has a	14	L2		
	mass of 2.5 kg, find the unbalanced primary and secondary forces and				
	couples. Take central plane of engine as reference plane.				
c.	What is static and Dynamic balancing?	4	L1	CO5	PO1

Fig. 3a

* * * *