	U.S.N								
Time:	P.E.S. College of Engineering, Mandya - 5' (An Autonomous Institution affiliated to VTU, Belagavi, Fourth Semester, B.E Automobile Engineerin Semester End Examination; August - 2023 Automotive Engines and Components) g		Iarks:	100				
The S	tudents will be able to:								
 CO1: Classify Heat engine and Analyze actual working principle of Heat engines. CO2: Analyze engine block and its auxiliaries and Determine major dimensions of the same. CO3: Analyze Piston-rings-pin and Determine major dimensions of the same. CO4: Analyze Connecting rod, crank shaft & Flywheel. Determine major dimensions of the same. CO5: Analyze valve operating mechanism and Determine major dimensions of the same. Study of engine components of state of the art technologies. 									
<u>Note</u> : I) PART - A is compulsory. Two marks for each question. II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit. III) Use of Design Data Hand Book is permitted.									
Q. No.	Questions	Marks	BLs	COs	POs				
	I : PART - A	10							
1 a.	A Two stroke cycle engine as compared to a Four stroke cycle	2	L1	CO1	PO1				
	engine of the same size because there will be for each	2	LI	COI	roi				
b.	Interiors of the engine manifolds are generally made, but more	2	T 1	CO2	PO1				
	of this shall increase to the mixture flow.	2	LI	02	101				
c.	Two types of the rings in the piston are and								
	and Gudgeon pin in a piston is held in position by a	2	L1	CO3	PO1				
d.	In a forged Connecting rod, length between and	2	Т 1	CO4					
	axis is the proper measurement of the Connecting rod length.	2	L1	CO4	rUl				
e.	In a four stroke cycle engine, usually, each cylinder has a minimum of	2	Т 1	005					
	and valves and a maximum of and valves.	2	L1	CO5	PUI				
	II : PART - B	90							
	UNIT - I	18							
2 a.	Explain with simple sketches, the ACTUAL working principle of a 4								
	stroke CI Engine, duly mentioning the actual valve timing diagram and	9	L2		PO1				
	P-V diagram.			CO1					
b.	Explain with simple sketches, the working principle of a 2 stroke 3 port	0	т 1						
	engine, duly mentioning the port timing diagram and P-V diagram.	9	L1		PO1				

P18AU44		Page No 2		
c.	Compare SI and CI Engines based on; Basic cycle, Fuel and Introduction			
	of fuel, ignition, Compression Ratio Range, Speed, Efficiency, Weight,	9	L2	PO1
	Combustion, Two Stroke operation, A/F Ratio, Very high power, Super	7	LZ	roi
	Charging.			
	UNIT - II	18		
3 a.	Explain with neat sketch,			
	i) Cylinder wear due to abrasion, erosion and corrosion	9	L2	PO1
	ii) Guarding Against Cylinder Distortion			
b.	Sketch and explain the following:			
	i) Separate and integral cylinder heads	9	L1	CO2 PO1
	ii) Dry liner and wet liner			
с.	What are the general types of Mufflers used in automobiles? Sketch and			
	explain, the construction and working of any one type of exhaust	9	L1	PO1
	mufflers used in an automobile			
	UNIT - III	18		
4 a.	What do you mean by piston slap and piston clearance? With neat	9	1.2	PO1
	sketches, explain any one method each for preventing the same.	9	L2	POI
b.	Sketch and explain about typical temperature distribution in pistons.	9	L2	PO1
с.	Design a cast iron piston for a single acting IC Engine from the			
	following data, Assume Missing data, if any			
	Diameter of cylinder Bore = 250mm			002
	Maximum explosion pressure $= 4.91$ N/mm ²			CO3
	Permissible stress for CI Engine $= 39.24$ N/mm ²	9	L3	PO1,2
	Permissible stress for piston ring $= 98.1$ N/mm ²			
	Radial wall pressure $= 0.04$ N/mm ²			
	Permissible bearing pressure for pin = 19.62 N/mm ²			
	Permissible bending stress in pin $= 63.77$ N/mm ²			
	UNIT - IV	18		
5 a	Explain with neat sketches,			
	i) Different arrangements of connecting piston and connecting rod	9	L1	PO1
	ii) Construction and function of a vibration damper.			
b.	Design a connecting rod for four stroke petrol engine with the			CO4
	following data:	0	1.2	DO1.0
	Diameter of piston = 88 mm;	9	L3	PO1,2
	Stroke =125 mm;			

P18AU44			Page No 3		
	Weight of reciprocating parts = 15.696 N				
	Length of connecting rod centre to centre = 300 mm ;				
	R.P.M. = 2200 with possible over speed of 3000				
	Compression ratio = $6.8:1$,				
	Probable maximum explosion pressure (assumed shortly after dead				
	centre, say when, $=3^{\circ}$) = 3.4335 N/mm ²				
	Assume any further data required for the design.				
с	A force of 117.720kN acts tangentially on the crankpin of an overhang				
	crank. The axial distance between the centre of the crankshaft journal				
	and the crankpin is 400 mm and the crank is 500 mm long. Determine,				
	(i) Diameter and length of the crankpin journal,	9	L3		PO1,2
	(ii) Diameter of the shaft journal, from the following data:				
	Safe bearing pressure = 5.91 N/mm ²				
	Bending stress = 63.77 N/mm ²				
	Principal stress in the shaft journal = 63.77 N/mm ²				
	UNIT - V	18			
6 a.	Classify Mechanisms with side camshaft and and Mechanisms with	9	L1		PO1
	overhead camshaft. Sketch and briefly explain any one in each group.		21		
b.	Explain with sketch, the different Camshaft drives along with their	9	L1	CO5	PO1
	limitations and benefits.				
c.	Why is the Morse test not suitable for a single cylinder engine? Describe	9	L1		PO1
	the method of finding friction power using Morse test?	-			-

* * * *