
P18AU46 Page No 1										
	U.S.N									
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Fourth Semester, B.E Automobile Engineering Semester End Examination; August - 2023 Heat Transfer										
Time: 3 hrs Max. Marks: 100										
<i>Course Outcomes</i> The Students will be able to: CO1: Able to formulate to solve problems in fundamentals of heat transfer modes.										
CO2: Able to apply basic equations of heat conduction in steady one dimensional problems and design of fins.										
CO3: Able to formulate, solve transient conduction and forced convection problems. CO4: Able to formulate, solve in free convection problems .design of heat exchangers.										
CO5: Able to apply the concepts of radiation heat transfer to solve problems.										
Note: I) PART - A is compulsory. Two marks for each question. II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit. III) Heat transfer DATA handbook is allowed.										
Q. No.	Questions	Marks	BLs	COs	POs					
	I : PART - A	10								
1 a.	State Fourier's law of conduction.	2	L1	CO1	PO1					
b.	Define Fin effectiveness.	2	L1	CO2	PO1					
c.	What is lumped system analysis? When is it applicable?	2	L1	CO3	PO1					
d.	Explain fouling factor.	2	L1	CO4	PO1					
e.	What is meant by gray body?	2	L1	CO5	PO1					
	II : PART - B 90									
	UNIT - I	18								
2 a.	What is heat transfer? Briefly explain three modes of heat transfer.	9	L1	CO1	PO1					
b.	A Surface having an area of 1.5 $\ensuremath{\text{m}}^2$ and maintained at 300°C exchanges									
	heat by radiation with another surface at 40° C. The value of the fraction									
	due to the geometric location and emissivity is 0.52.	0	1.0	001	DOA					
	Determine; i) Heat loss by radiation	9	L3	CO1	PO2					
	ii) The value of thermal resistance									
	iii) The value of the equivalent convective coefficient									
с.	What do you mean by boundary condition of 1^{st} , 2^{nd} and 3^{rd} kind?	9	L1	CO1	PO1					
	UNIT - II	18								
3 a.	What is a fin? What are the different types of fins? Where is fin used?	9	L1	CO2	PO1					
b.	Derive an expression for critical thickness of insulation of a cylinder and state its importance.	9	L2	CO2	PO2					

Page No... 2

P18AU46

c. Consider a 3-m-high, 5-m-wide, and 0.3-m-thick wall whose thermal conductivity is $k = 0.9 \text{ W/m} \cdot \text{K}$ (Figure). On a certain day, the temperatures of the inner and the outer surfaces of the wall are measured to be 16°C and 2°C, respectively. Determine the rate of heat loss through the wall on that day.

b. Briefly explain the classification of heat exchangers by flow arrangement. 9 L2 CO4 PO1,2

P18AU	P18AU46		Page No 3			
c.	A 6-m-long section of an 8-cm-diameter horizontal hot-water pipe					
	shown in figure passes through a large room whose temperature is					
	208C. If the outer surface temperature of the pipe is 708C, determine					
	the rate of heat loss from the pipe by natural convection.					
	$T_{\infty} = 20^{\circ} \text{C}$	9	L3	CO4	PO1,2	
	UNIT - V	18				
6 a.	Explain the following:					
	i) Kirchhoff's law	9	L2	CO5	PO1	
	ii) Stefan Boltzmann law	9	L2	COS	FUI	
	iii) Wein's displacement law					
b.	Define the following:					
	i) Reflectivity	9	L1	CO5	PO1	
	ii) Transmissivity	9	LI	COS	FUI	
	iii) Absorptivity					
с.	Two parallel, infinite gray surfaces are maintained at temperature of					
	127°C and 227°C respectively. If the temperature of the hot surface is		L3	CO5 I		
	increased to 327°C, by what factor is the net radiation exchange per	9			DO1 2	
	unit area increased? Assume the emissivities of colder and hotter	9	LJ	COJ	101,2	
	surfaces to be 0.9 and 0.7 respectively also calculate same if both					
	surfaces are black.					

* * * *