P18CH12/22 Page No... 1

U.S.N

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

I/II Semester, B.E. - Semester End Examination; August - 2023 **Engineering Chemistry**

(Common to All Branches)

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- *CO1:* Aware and Recognize the importance of Chemical fuels and Alternate fuels.
- CO2: Describe the construction, working and applications of electrodes, cells, and batteries.
- CO3: Apply the knowledge of Chemistry to understand the mechanism and prevention of corrosion. Engineering applications of electro-plating and electro-less plating
- CO4: Synthesis of various polymers and study their applications. Use of cement and lubricants in the field of engineering. Acquiring the knowledge of liquid crystals, nano science, water technology and *Water pollution.*

Note: I) **PART - A** is compulsory. **Two** marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.									
Q. No.	Questions	Marks	BLs	COs	POs				
	I: PART - A	10							
1 a.	Define Calorific value.	2	L1	CO1	PO1				
b.	Name any four components of battery.	2	L1	CO2	PO1				
c.	Write any two applications of electro - less plating of Nickel	2	L1	CO3	PO1				
d.	Name the minomers used in the synthesis of Kevlar.	2	L1	CO4	PO1				
e.	What are liquid crystals? Give an example.	2	L1	CO5	PO1				
	II : PART - B	90							
	UNIT - I	18							
2 a.	What are Chemical Fuels? Explain the construction and working of calorific value of solid fuel using bomb calorimeter.	9	L2	CO1	PO1				
b.	Define PV cell. Illustrate the principal, working and applications of PV cell.	9	L2	CO1	PO1				
c.	A sample of coal contains $C = 94\%$, $H = 5\%$ and ash = 1%. The following data were obtained when the above coal was tested in bomb calorimeter. Weight of coal = 0.95g, weight of water taken = 700g, weight of water equivalent of calorimeter = 2000 g, increase in temperature = 2.48°C, Fuse wire correction = 10.0 cal. Acid correction=60.0 cal, Cooling correction=0.02°C. Calculate the GCV and NCV of coal (latent heat of condensation of steam=587cal/g) $S = 4.187 \text{ J/kg/°C}$.	9	L3	CO1	PO2				
	UNIT – II	18							
3 a.	Summarize the construction, working and applications of Calomel electrode.	9	L2	CO2	PO2				

P18CH12/22		Page No 2			2
b.	Explain the construction, working and applications of Methanol-Oxygen fuel cell.	9	L2	CO2	PO1
c.	Discuss the following battery characteristics:				
	i) EMF ii) Capacity iii) % of Energy efficiency	9	L2	CO2	PO2
	iv) Shelf life v) Cycle life				
	UNIT - III	18			
4 a.	Describe the differential metal corrosion and differential aeration	9	L2	CO3	PO2
	corrosion with example.		LL	CO3	102
b.	Outline the following factors affecting the rate of corrosion:				
	i) Nature of Metal	9	L2	CO3	DO2
	ii) Nature of corrosion product	9	LZ	CO3	102
	iii) Anodic and cathodic areas				
c.	Define electro-less plating. Describe the electro-less plating of Cu on	9	L1	CO3	D∩1
	PCB	9	LI	COS	roi
	UNIT - IV	18			
5 a.	Illustrate the synthesis and applications of the following polymers:	9	L2	CO4	DO2
	i) PMMA ii) Polycarbonates iii) Epoxy Resin	9	L2	CO4	PO2
b.	What are the constituents of cement? Explain the following properties of				
	cement:	9	Т 1	CO4	DO1
	i) Quality ii) Shrinkage	9	L1	CO4	POI
	iii) Soundness iv) Color				
c.	Define conducting polymer. Describe the synthesis, mechanism (n-type)	9	Т 1	CO4	DO2
	and applications of poly-acetylene.	9	L1	CO4	POZ
	UNIT - V	18			
6 a.	Define Nano chemistry. Explain the following size dependent properties				
	of nanomaterial:	9	L1	CO5	DO2
	i) Surface area ii) Electrical properties	9	LI	COS	FO2
	iii) Optical properties iv) Catalytic properties				
b.	Discuss the purification of water for Municipal supply.	9	L2	CO5	PO1
c.	Define BOD and COD. Calculate the COD of effluent sample				
	when 25 ml of effluent is mixed and refluxed with 25ml of $K_2Cr_2O_7$	9	12	COS	DO2
	required 9.8 ml of 0.05N FAS. The blank titration consumed 19.8ml	9	L3	CO5	PU2
	of 0.05 N FAS.				