

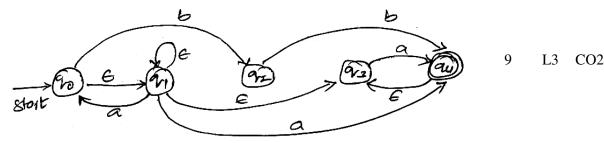
U		cession to accept the set of sumgs of 0 s and 1 s chus with 1		12	CO2
	and does not conta	in the substring 00.	2		0.02
с	. Write content free	grammar for the following regular expression:	C	тэ	CO3
	$(ab)^{*} a (a + b)^{*}$		Z	LZ	COS

	II : PART – B	90		
e.	Define Turing Machine.	2	L1	CO5
d.	Define deterministic pushdown automata.	2	L1	CO4
	(ab) $a(a + b)$			

UNIT – I

2 a. Construct the deterministic finite automata for the given language;

 $\alpha = \{ W \mid W \in \{a, b\}^* \text{ and } \mid W \mid \text{mod } 3 > \mid W \mid \text{mod } 2 \}$


L6 CO1

18

9

Show that the string 'bbabb' is accepted or not by using intended transition function.

b. Write subset construction algorithm and convert the following \in -NFA to DFA.

P18CS42

c. What are distinguishable and indistinguishable state and minimize following DFA.

	-	δ	0	1				
		$\rightarrow A$	В	A				
		В	А	C				
		С	D	В		9	L3	CO1
		*D	D	А				
		Е	D	F				
		F	G	Е				
		G	F	G				
		Н	G	D				
		UNIT - II						
3 a.	State and prove the pumping	nd prove the pumping Lemma for regular languages and show that		0		~~~		
	$L = \{a^{n}b^{n} \mid n \ge 1\} \text{ is not regula}$	ar.				9	L2	CO2
b.	Prove that every language def	ined by	regula	ar expre	ession is also defined by finite			
	automate and convert the given RE to \in – NFA.						L2	CO2
	$a^* + b^* + c^*$							
c.	Consider the following languages defined over $\Sigma = \{0, 1\}$							
	$L_1 = \{ \text{ the set of all string containing at least one } 0 \}$							
	i) Write regular expression for L_1 and L_2				9	L3	CO2	
	ii) Draw the DFA for L_1 and L_2				-	25	002	
	iii) Draw the DFA to recognizing the languages							
	$L_1 \cup L2, \ L_1 \cap L_2, L_1 - L_2$							
	UNIT - III					18		
4 a.						9	Тć	601
	L = {ab (bbaa) ⁿ bba (ba) ⁿ $n \ge 0$ } and also construct the derivation free for the						L6	CO3
Ŀ	input string abbbaabbaba by using left most and right most deviation.						1.0	CO^{2}
b.	Mention the applications of CFG and explain any two applications in detail.					9	L2	CO3
с.	Convert the following CFG to CNF S \rightarrow aA aBB							
	$S \rightarrow aA \mid aBB$ $A \rightarrow aaA/\epsilon$				9	L3	CO3	
	$A \rightarrow aaA/e$ B $\rightarrow bB / bbC$					J	LJ	005
	$B \rightarrow OB / OOC$ $C \rightarrow B$							

P18CS42				Page No 3 18		
	UNIT - IV					
5 a.	Define PDA design deterministic pushdown automata for the language					
	L = $\{a^n b^m c^{n+m} n \ge 1, m \ge 1\}$ and also show the ID for the input string	9	L5	CO4		
	"abbccc".					
b.	Convert the PDA to a CFG, if f is given by					
	$P = \{ \{p, q\} \{0, 1\} \{ x, Z\} \delta, q, Z\} \}$					
	$\delta(q, 1, Z) = \{(q, XZ)\}$					
	$\delta(q, 1, X) = \{(q, XX)\}$		L3			
	$\delta(q, \in, X) = \{(q, \in)\}$	9		CO4		
	$\delta(q, 0, X) = \{(p, X)\}$					
	$\delta\left(p,1,X\right)=\left\{p,\in\right\}$					
	$\delta(p, 0, Z) = \{ (q, Z) \}$					
с.	Define Language of PDA and convert the following CFG to PDA: $S \rightarrow aA$			CO4		
	$A \rightarrow aA \mid bA \mid a \mid b$		L3			
	UNIT - V	18				
6 a.	Design Turing machine for the language to accept the set of strings with equal					
	number of 0's and 1's and also show the instantaneous description for the input	9	L6	CO5		
	string "110100".					
b.	Explain the multitape and multistack Turing machine with neat diagram.	9	L2	CO5		
с.	Write short notes on the following:					
	i) Recursively enumerable languages	9 L2	10	CO5		
	ii) Nondeterministic Turing machine	У	L2	COS		
	iii) Post correspondence problem					

* * * *