

Time: 3 hrs

Course Outcomes

Max. Marks: 100

The Students will be able to:

CO1: Analyse the computational complexity of different algorithms.

CO2: Develop the solution for given problems using divide and conquer and decrease and conquer methods.

CO3: Develop an algorithm using Greedy method and transform and conquer methods.

CO4: Develop the solution for given problems using Dynamic programming approach.

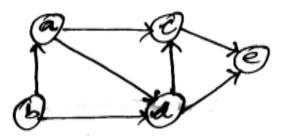
CO5: Develop the solution for given problems using Backtracking and Branch-and-Bound technique.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

Q. No.	Questions	Marks	BLs	COs	POs
	I : PART - A	10			
1 a.	Let A be the adjacency matrix of an undirected graph. Defining the				
	following, explain what property of the matrix indicates that (i) The	2	L1	CO2	PO1,2,3,4
	graph has an isolated vertex, i.e., a vertex with no edges incident to it.				
b.	List the advantages and disadvantages of divide and conquer techniques.	2	L2	CO2	PO1,2,3,4
с.	Define Balance factor with reference to AVL Trees.	2	L1	CO3	PO1,2,3,4
d.	Define;				
	(i) Spanning Tree	2	L1	CO3	PO1,2,3,4
	(ii) Minimum Spanning Tree				
e.	List any two problems that can be solved using backtracking method.	2	L1	CO5	PO1,2,3,4
	II : PART - B	90			
	UNIT - I	18			
2 a.	Explain the three different asymptotic notations with an example	9	1	CO1	PO1,2,3,4
	for each.	,	1	001	101,2,3,4
b.	Discuss the steps to analyze the efficiency of non-recursive algorithm				
	and apply the same to find value of the largest element in a list of n	9	3	CO1	PO1,2,3,4
	numbers.				
с.	Write Bubble sort algorithm and analyze its efficiency.	9	3	CO1	PO1,2,3,4

UNIT - II


CO2 PO1,2,3,4

18

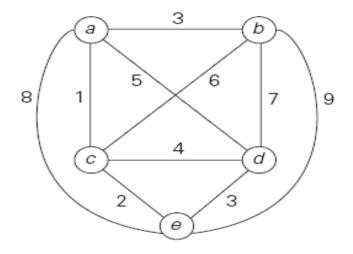
9

3

3 a. Explain the steps to find the topological ordering using source removal method and apply the same to find the topological ordering of the graph given below.

b.	Write a Merge sort algorithm and analyze its efficiency using Master's theorem.	9	3	CO2 PO1,2,3,4
c.	Write Strassen's matrix multiplication algorithm and evaluate the asymptotic efficiency of this algorithm.	9	3	CO2 PO1,2,3,4
	UNIT - III	18		
4 a.	Explain why rotations are necessary in AVL trees? Explain the various	9	2	CO3 PO1,2,3,4
	types of rotations in AVL trees.			
b.	Write Horspool's algorithm for pattern matching. Apply Horspool's			
	algorithm to search for the pattern BARBER in the text	9	3	CO3 PO1,2,3,4

JIM_SAW_ME_IN_A_BARBERSHOP


c. Apply memory function method to the instance of Knapsack problem given below.

item	weight	value				
1	2	\$12		9	3	CO4 PO1,2,3,4
2	1	\$10	capacity W = 5.			
3	3	\$20				
4	2	\$15				
	UN	NIT - IV		18		

5 a. Write Warshall's algorithm for finding the transitive closure of a given 9 3 CO4 PO1,2,3,4 graph. Analyze its time efficiency.

P18CS43							Ра	Page No 3			
b.	. Write Huffman's algorithm to construct Huffman Tree. Consider the										
	five-symbol alphabet {A, B, C, D, _} with the following occurrence										
	frequencies in a text	made up of th	nese sym	bols:							
	symbol	А	В	С	D	_	9	3	CO4	PO1,2,3,4	
	frequency	0.35	0.1	0.2	0.2	0.15					
	Construct the Huffman tree for the given input.										
c.	c. What are Decision trees? Write an algorithm to find the minimum of							2	C05	PO1,2,3,4	
	three numbers and Write the Decision tree for the same.						9	L	COS	PO1,2,3,4	
	UNIT - V						18				
6 a.	What is Backtracking? Apply the Backtracking to solve 4-Queens					9	3	CO5	PO1,2,3,4		
	problem.						-	-		- , ,- ,	
b.	Apply backtracking algorithm to solve the instance of the sum-of-subset						9	3	C05	PO1,2,3,4	
	problem $A = \{3, 5, 6, 7\}$ and $d = 15$.					/ 5	200 101,2,3,1	т 01,2,3,7			

c. Explain the Branch and Bound method. Apply the Branch and Bound algorithm to solve the Travelling sales Person for the graph given below.

9 3 CO5 PO1,2,3,4

* * * *