U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Sixth Semester B.E. - Computer Science and Engineering Semester End Examination; August - 2023 Compiler Design

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

CO1: Design simple lexical analyzer.

CO2: Construct simple top down parser for a given context free grammar.

CO3: Construct simple bottom up parser for a given context free grammar.

CO4: Apply different syntax directed translation schemes.

CO5: Generate intermediate and machine dependent code.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

	TIRT - D. Miswer any <u>Iwo</u> sub-questions (from a, b, c) for a maximum of 10 mi	U			DC
Q. No.	Questions	Marks	BLs	COs	POs
	I: PART - A	10	Τ.Ο	001	DO 1
1 a.	Define an Interpreter.	2	L2	CO1	POI
b.	Define Ambiguity.	2	L2	CO2	PO1
c.	Construct parse tree for the given expression: $-(id + id)$.	2	L4	CO3	PO1
d.	What is symbol table?	2	L1	CO4	PO1
e.	List the three primary tasks of a code generator.	2	L2	CO5	PO1
	II : PART - B	90			
	UNIT - I	18			
2 a.	With a structure of compiler, explain various phases of it.	9	L2	CO1	PO1
b.	What are tokens, patterns, and lexeme? Identify tokens, patterns, and				
	lexeme for the given statement.	9	L2	CO1	PO1,2
	<pre>printf("Total=%d\n", score);</pre>				
c.	Explain various operations on language with relevant examples for each.	9	L2	CO1	PO1,2
	UNIT - II	18			
3 a.	Explain left recursion. Eliminate left recursion from the following				
	grammar:				
	$E \rightarrow E+T T$	9	L2	CO2	PO1,2
	$T \rightarrow T^*F F$				
	$F \rightarrow (E) id$				
b.	Compute first and follow for the given grammar:				
	$S \rightarrow ABCDE$				
	$A \rightarrow a \epsilon$				
	$B \rightarrow b \epsilon$	9	L5	CO2	PO2,3
	$C \rightarrow c$				
	$D \rightarrow d \mid \varepsilon$				
	$E \rightarrow e \mid \epsilon$				

Page No... 2 P18CS62 c. Define context free grammar. Write the grammar for simple arithmetic 9 L2,5 CO2 PO1,2 expressions. **UNIT - III** 18 4 a. Construct the SLR passing table for the following grammar: 9 L5 CO3 PO2,3 $A \rightarrow (A)|a$ b. Illustrate the model of LR parser and explain the structure of LR 9 L2 CO3 PO1,2 parsing table. c. Consider the following grammar and justify whether the grammar has shift | reduce conflict; $stmt \rightarrow if expr then stmt$ 9 L5 CO3 PO2,3 if expr then stmt else stmt other **UNIT - IV** 18 5 a. Explain inherited and synthesized attributes of SDD. Write SDD for a 9 L2,5 CO4 PO1,2 simple calculator. b. With a neat sketch, explain the typical subdivision of runtime memory. 9 L2 CO4 PO2,3 c. What is activation record? Explain the field of general activation record. L3 CO4 PO3 9 UNIT - V 18 6 a. Construct DAG for the following expression: $T_1 = a + b$ $T_2 = a - b$ 9 L5 CO5 PO2,3 $T_3 = T_1 * T_2$ $T_4 = T_1 - T_3$ $T_5 = T_4 + T_3$ b. Write an algorithm to partition three-address instructions into basic 9 L2 CO5 PO1,2 blocks. c. Illustrate the register allocation by graph coloring. 9 L3 CO5 PO3