U.S.N

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Sixth Semester, B.E. - Computer Science and Engineering Semester End Examination; August - 2023 Data Analytics

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1: Analyze data sets using Descriptive Statistics.
- CO2: Apply data pre-processing methods on raw data set.
- CO3: Apply unsupervised algorithms for the give problem.
- CO4: Apply supervised algorithms for the give problem.
- CO5: Design and Implement real time applications in data analytics

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

	<u> </u>	, , , , , , , , , , , , , , , , , , ,			
Q. No.	Questions	Marks	BLs	COs	POs
	I : PART - A	10			
1 a.	Define Descriptive Univariate Analysis.	2	L1	CO1	PO1,2,5
b.	Classify inconsistent and redundant data.	2	L2	CO2	PO1,2,5
c.	List the values of common attribute types.	2	L1	CO3	PO1,2,3,5
d.	Describe linear regression.	2	L2	CO4	PO1,2,3,5
e.	Explain Support Vector Machine in brief.	2	L2	CO5	PO1,2,3,5
	II : PART - B	90			
	UNIT - I	18			
2 a.	Discuss the advantages and disadvantages of the KDD process.	9	L2	CO1	PO1,2,5
b.	Interpret Location Multivariate Statistics with suitable example.	9	L3	CO1	PO1,2,5
c.	Explain the importance of Insolvency Data with suitable example.	9	L2	CO1	PO1,2,5
	UNIT - II	18			
3 a.	Explain the conversion from Nominal to Relative with suitable example.	9	L2	CO2	PO1,2,5
b.	Discuss the steps involved in principal component analysis.	9	L2	CO2	PO1,2,5
c.	Analyse the key steps followed in Exploratory Data Analysis.	9	L4	CO2	PO1,2,5
	UNIT - III	18			
4 a.	Compare Distance Measures for Objects with Quantitative Attributes	9	L4	CO3 P	DO1 2 2 5
	with Distance Measures for Non-conventional Attributes.				101,2,3,3
b.	Demonstrate FP-growth with an example.	9	L3	CO3	PO1,2,3,5
c.	Explain Density-based spatial clustering with an example.	9	L2	CO3	PO1,2,3,5

P18CS63			Page No 2		
	UNIT - IV	18			
5 a.	Illustrate Naive Bayes algorithm with an example.	9	L3 CO4 PO1,2,3,5		
b.	Explain how parameters are found for a model and model validation is done?	9	L2 CO4 PO1,2,3,5		
c.	Discuss Predictive Performance Measures for Classification with suitable example.	9	L2 CO4 PO1,2,3,5		
	UNIT - V	18			
6 a.	Discuss in detail about Back propagation.	9	L2 CO5 PO1,2,3,5		
b.	Discuss how decision trees can be used for regression with an example.	9	L2 CO5 PO1,2,3,5		
c.	Explain Recommender Systems with a suitable example.	9	L2 CO5 PO1,2,3,5		

* * * *