PIOUV	02		1 ug	<i>je</i> 110.	1				
	U.S.N								
	P.E.S. College of Engineering, Mandya - 5	71 40	1						
(An Autonomous Institution affiliated to VTU, Belagavi)									
Sixth Semester B.E Civil Engineering									
Semester End Examination; August - 2023									
Time:	Geotechnical Engineering - I 3 hrs	M	ax. M	arks:	100				
Course Outcomes The Students will be able to: CO1: Apply the knowledge of chemistry & Geology to distinguish structural arrangements of soils. CO2: Examine and evaluate index properties of soils CO3: Implement compaction and consolidation characteristics of ground modification for sustainable developments									
									CO4: E
Note: I) PART - A is compulsory. Two marks for each question. II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.									
Q. No.	Questions	Marks	BLs	COs	POs				
	I : PART - A	10							
1 a.	With the help of phase diagram, define the following terms:								
	i) Void ratio	2	L1	CO1	PO				
	ii) Degree of Saturation								
b.	With the help of volume versus water content diagram, define the								
	following terms:	2	Т 1	CO2					
	i) Consistency index	2	LI	02	r0.				
	ii) Liquidity index								
c.	Calculate the compactive energy for the following compaction test								
	i) Standard proctor's test	2	L1	CO3	POT				
	ii) Modified proctor's test								
d.	Define the following terms with help of neat sketch:								
	i) Capillary phenomena	2	L1	CO3	POT				
	ii) Quick sand phenomena								
e.	Define the following terms:								
	i) Sensitivity of clay	2	L1	CO4	PO				
	ii) Thixotropy of clay								
	II : PART - B	90							
2	UNIT - I	18							
2 a.	With the help of phase diagram, derive relation between γ_d ,								
	ω , n_a and G.	9	L2	CO1	PO2				
	$\gamma_d = \frac{(1 - n_a)G\gamma\omega}{1 + \omega G}$								

P18CV62			Page No 2		
b.	A soil in the borrow pit is at a bulk unit weight of 18.70 kN/m ²	³ with a			
	moisture content of 10%. The soil is excavated from this	•			
	compacted in an embankment to bulk unit weight of 20.70 kN/m	9	L2 CO1 PO3		
	moisture content of 15 %. Computer the quantity of soil to be ex				
	from the barrow pit and the amount of water to be added for 10	$0 \text{ m}^3 \text{ of}$			
	compacted soil in the embankment.				
с.	Critically distinguish between the following:				
	i) Soil fabric and Soil structure				
	ii) Residual soil and Transported soil	9	L2 CO1 PO1		
	iii) Single grained and Honey combed structures				
	iv) Flocculent and Dispersed structures	10			
2 -	UNIT - II	18			
3.a	 i) Explain test on field identification of soil. ii) Draw a next electric fIS relativity short and evaluate its evaluation. 	9	L2 CO2 PO2		
1	ii) Draw a neat sketch of IS plasticity chart and explains its uses.	a of acil			
b.	500 g of dry soil was subjected to a fine sieve analysis. The mass retained on each sieve is as follows:	s of soli			
		075			
			L2 CO2 PO2		
	Mass of soil (g)1016510085603030i) Plot the Grain size distribution curve.	30 9	L2 CO2 PO2		
	ii) Prot the Grant size distribution curve.ii) Percentage of gravel, sand and silt-clay fraction in the soil as p	oor IS			
	iii) Gradation of the soil sample as per IS.	JEI 15.			
c.	The following refer to a liquid limit test of a soil sample, whose	e plastic			
с.	limit is 20%:	, plastic			
	Number of blows (N) 12 18 22 34				
	Water content (ω)% 56 52 50 45	9	L2 CO2 PO2		
	i) Plot flow curve and obtain liquid limit, plasticity index, flow				
	and toughness index	W IIIdex			
	ii) Classify the soil sample as per IS				
	UNIT - III	18			
4 a.	List and enumerate the factor affecting permeability.	9	L3 CO3 PO7		
b.	A permeameter of diameter 82.5 mm contains columns of withs	stand of			
	460mm long. Where water flows under constant head at the	rate of			
	191×10^3 mm ³ in 1 minutes. The loss of head between two points	ints 250			
	mm apart is 380 mm. Calculate the coefficient of permeabili	ity. If a 9	L3 CO3 PO7		
	falling head test is made on the same soil sample using stand	pipe of			
	diameter 8 mm in what time when the water level in the stand p	pipe fall			
	from 1560 mm to 1060 mm above the outflow level?	2			
	Contd.	3			

P18CV	/62		Page No 3
c.	An earthen embankment is to be constructed with soil having the void		
	ratio of 0.85 near the dam three borrow pits are available which are		
	designated as A, B and C. The void ration of the soil in each pit and cost		
	of conveying to the dam per cubic meter in the following section:		
	Pit A B C	9	L3 CO3 PO7
	Void ratio 0.95 1.90 1.65		
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
	The total volume of soil is required is 5×10^5 m ³ . Estimate which pit is		
	economical.	10	
_	UNIT - IV	18	
5 a.	Enumerate the following with neat sketch, step by step procedure to		
	determine coefficient of consolidation:	9	L3 CO3 PO7
	i) Square root of time fitting method.		
	ii) Logarithm time fitting method		
b.	The water table in a certain area is at a depth of 4 m below ground		
	surface to a depth of 12 m. The soil consists of very fine sand having an		
	average void ratio of 0.70. Above the water table, the sand has a degree		
	of saturation of 50 % Calculate the total stress, pore water stress and	9	L3 CO3 PO7
	effective stress on a horizontal plane at a depth of 10 m below the ground		
	surface. Take $G = 2.65$. Draw the variation of stresses with respect to		
	depth.		
c.	A consolidation test was performed on a 25 mm thick undisturbed clay		
	sample. 50 % consolidation occurred in 5 minutes. The sample was		
	drained both at the top and at the bottom. In the field, the clay layer is 2		
	m thick and is underlain by an impervious rock. Drainage is possible	9	L3 CO3 PO7
	only at the top surface. Determine the coefficient of Consolidation and		
	calculate the time in days for 50% and 90% consolidation to takes place		
	in the field deposit.		
	UNIT - V	18	
6 a.	Enumerate briefly different drainage conditions in tri axial test in	9	L3 CO4 PO2
	laboratory and how these simulate field problems.	-	20 00 102
b.	A direct shear test was carried out on a cohesive soil sample and the		
	following results were obtained:		
	Normal stress (kN/m2)150250	9	L3 CO4 PO2
	Shear stress at failure (kN/m²)110120	,	20 001 102

What would be the deviator stress at failure if a tri-axial test is carried out on the same soil with cell pressure of 150 kN/m^2 ?

c. An unconfined compression test was done on a saturated clay specimen of diameter 40mm and height 80 mm. The failure load was 400 N and the axial deformation then was 7 mm. compute the unconfined strength of soil. When an identical specimen of the same soil was tested in a triaxial compression at a chamber pressure of 100 kN/m², the sample failed at a deviator stress of 390 kN/m². Determine the shear strength parameters.

Page No... 4

L3 CO4 PO2

9

* * * *