P18CV81 Page No 1									
	U.S.N								
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Eighth Semester, B.E Civil Engineering Semester End Examination; July - 2023 Design of Pre-Stressed Concrete Structures Time: 3 hrs									
	<i>Course Outcomes</i> dents will be able to:								
 CO1: Apply the knowledge of principles of pre-stressing. CO2: Analyze the stresses in PSC members under flexure. CO3: Evaluate various losses, defection members, flexural strength, shear strength and principal tensile stresses in PSC members. CO4: Design PSC beams for shear and end block design as per codal provisions. Note: I) PART - A is compulsory. Two marks for each question. II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit. III) IS:1343-2012 is permitted. Assume any missing data. 									
Q. No.		Marks	BLs	COs	POs				
	I : PART - A	10							
1 a.	What is the basic principle of prestressed concrete?	2	L1	CO1	PO1,2				
b.	A concrete beam supports two concentrated loads equally spaced on the								
	simply supported span. Suggest a suitable cable profile to counteract the effect of these live loads	2	L1	CO3	PO1,3				
c.	What is anchorage slip?	2	L1	CO3	PO1,3				
d.	How do you estimate the ultimate shear strength of PSC sections with				-				
	web shear cracks?	2	L2	CO3	PO1,3				
e.	Define anchorage zone.	2	L1	CO4	PO1,3				
	II : PART - B	90							
	UNIT - I	18							
2 a.	With the neat sketches, explain pre-tensioning and post-tensioning. State	9	12	CO1	PO1,2				
	the advantages and disadvantages of these methods.)		001	. 01,2				
b.	Differentiate between;								
	i) Concentric and eccentric tendons	9	L3	CO1	PO1,2				
	ii) RCC and PSC		<u> </u>	201	1,2				
	iii) Bonded and Unbonded beam								

c. Outline the stress concept used for the analysis of SSB subjected to parabolic cable profile maximum at mid span and zero at support along 9 L4 CO2 PO1,2 with imposed load on it.

P18CV81			Page No 2
UNIT - II		18	
3 a.	A simply supported beam of PSC spanning over 10 m is of rectangular		
	section 500 mm wide by 750 mm deep. The beam is prestressed by a		
	parabolic cable having an eccentricity of 200 mm at the centre of span		
	and zero at the end supports. The effective force in the cable is 1600 kN.		
	If the beam supports a total UDL of 40 kN/m, which includes the self	10	
	weight of the beam,	18	L3 CO2 PO1,2
	i) Evaluate the extreme fiber stresses at the mid span section and draw		
	the stress diagram		
	ii) Calculate the force required in the cable having the same eccentricity		
	to balance a total load of 50 kN/m on the beam		
b.	A concrete beam of symmetrical I-section spanning 8 m has the width		
	and thickness of flanges equal to 200 and 60 mm respectively. The		
	overall depth of beam is 400 mm. The thickness of web is 80 mm. The		
	beam is prestressed by a parabolic cable with an eccentricity of 150 mm		
	at the centre and zero at the supports with an effective force of 100 kN.	18	L3 CO2 PO1,2
	The live load on the beam is 2 kN/m. Draw the stress diagram at the		
	central section for,		
	i) Prestress + Self weight (Density of concrete 24 kN/m ³)		
	ii) Presstress + self weight – live load		
	UNIT - III	18	
4 a.	What are the factors influencing the loss of stress due to creep of	9	L3 CO3 PO1,3
	concrete and how do you compute the loss of stress due to it.	2	
b.	A pre-tensioned beam 250 mm wide and 30 mm deep is prestressed by		
	12 wires each 7mm dia initially stressed to 1200 N/mm ² with their		
	centroids located 100 mm from the soffit. Estimate the final percentage		
	loss of stress due to elastic deformation, creep, shrinkage and relaxation	9	L3 CO3 PO1,3
	with the following data:	2	
	Relaxation of steel stress = 90 N/mm ² , $E_s = 210 \text{ kN/mm}^2$,		
	$E_C = 35 \text{ kN/mm}^2$, creep co-efficient (ϕ) = 1.6, residual shrinkage		
	strain = 3×10^{-4} .		
c.	A PSC beam of rectangular section 120 x 300 mm spans over 6 m. The		
	beam is prestressed by a straight cable carrying an effective force of		
	200 kN at an eccentricity of 50 mm. The module of elasticity of concrete	9	L3 CO3 PO1,3
	is 38 kN/mm ² . Compute the deflection at centre of span for the following	-	
	cases:		

- i) Deflection under prestress + self weight
- ii) Find the magnitude of the UDL which will nullify the deflection due to prestress and self weight

	to prestress and sen weight			
	UNIT - IV	18		
5 a.	A pre-tensioned PSC T-section having a flange width of 1200 mm and			
	thickness of flange 150 mm, thickness of web being 300 mm is			
	prestressed by 4700 mm ² of high tensile steel located at an effective	9	L3	CO3 PO1,3
	depth of 1600 mm. If $f_{ck} = 40 \text{ N/mm}^2$ and $f_p = 1600 \text{ N/mm}^2$, estimate the			
	ultimate moment capacity of the pre tensioned T-section.			
b.	A concrete beam of rectangular section 200 x 600 mm is prestressed by a			
	parabolic cable located at an eccentricity of 100 mm at mid span and		L3	
	zero at support. If the beam has a span of 10 m and carries a UDL of	9		CO3 PO1,3
	4 kN/m, find the effective force necessary in the cable for zero shear	9		CO3 FO1,5
	stress at the support section. For this condition calculate the principal			
	stresses. The density of concrete is 24 kN/m ³ .			
c.	A prestressed girder of rectangular section 150 x 300 mm is to be			CO3 PO1,3
	designed to support an ultimate shear force of 130 kN. The uniform			
	prestress across the section is 5 N/mm ² . Given the characteristic cube	9	L3	
	strength of concrete as 40 N/mm^2 and Fe – 415 HYSD bars of 8 mm dia,	2		05 101,5
	design suitable spacing for the stirrups conforming to the IS : 1343			
	recommendations. Assume cover to the reinforcement as 50 mm.			
	UNIT - V	18		
6 a.	A post-tensioned concrete beam 400 x 800 mm is prestressed by an			
	effective prestressing force of 1100 kN at an eccentricity of 120 mm. The	18 I		
	anchor plate is 400 mm x 400 mm. Calculate the bursting force and		L4	CO4 PO1,3
	design reinforcement to resist this force. Sketch the details of			
	reinforcement.			
b.	The end block of a post-tensioned beam is 300 x 300 mm and is	18 L		
	prestressed concentrically by a Freyssinet cylindrical anchorage of 150		L4	CO4 PO1,3
	mm dia with a jacking force of 800 kN. Design suitable anchorage zone	10		
	reinforcement and sketch the details.			

* * * *