| U.S.N |  |  |  |  |  |
|-------|--|--|--|--|--|



## P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)
Sixth Semester, B.E. - Civil Engineering
Semester End Examination; August - 2023
Traffic Engineering

Time: 3 hrs Max. Marks: 100

## Course Outcomes

The Students will be able to:

- CO1: Understand the human factors and vehicular factors in traffic engineering design.
- CO2: Conduct different types of traffic surveys and analysis of collected data
- CO3: Understand the concept of traffic signal design and influence of traffic on environment
- CO4: Understand the basic knowledge of transportation management and ITS.

**Note:** I) **PART - A** is compulsory. **Two** marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.

| Q. No.  | Questions                                                                                        | Marks |     |     | POs      |
|---------|--------------------------------------------------------------------------------------------------|-------|-----|-----|----------|
| Q. 110. | I : PART - A                                                                                     | 10    | DLS | COS | 105      |
| 1 a.    | What the objectives are of traffic Engineering?                                                  | 2     | L1  | CO1 | PO1,7    |
| b.      | Explain origin and destination study.                                                            | 2     | L1  | CO2 | PO3,4    |
| c.      | What are the advantages of traffic signals?                                                      | 2     | L1  | CO3 | PO3,7    |
| d.      | List different measures to prevent accidents.                                                    | 2     | L1  | CO4 | PO4,5,11 |
| e.      | List the travel demand management technique.                                                     | 2     | L1  | CO4 | PO4,5,11 |
|         | II : PART - B                                                                                    | 90    |     |     |          |
|         | UNIT - I                                                                                         | 18    |     |     |          |
| 2 a.    | Explain various human factors affecting road design and traffic                                  | 9     | L2  | CO1 | PO1,7    |
|         | performance.                                                                                     |       |     |     |          |
| b.      | Discuss on fundamental relationship between speed, flow and density.                             | 9     | L2  | CO1 | PO1,7    |
| c.      | A car weighing 2 tonnes is required to accelerate at rate of 2.3 m/s <sup>2</sup> in             |       |     |     |          |
|         | the second gear from a speed of 10 kmph. The upward gradient is $+3\%$                           |       |     |     |          |
|         | and the coefficient of rolling resistance is 0.022. The frontal area of the                      | 0     | 1.2 | CO1 | PO1,7    |
|         | car is $2.15\text{m}^2$ and the coefficient of air resistance is $0.39\ \text{kg/m}^3$ . The car |       |     |     |          |
|         | tyre have the radius of 0.33m. The inflation pressure reduces this by a                          | 9     | L3  |     |          |
|         | factor 0.915. The rear axle gear ratio is 3.90:1 and the first gear ratio is                     |       |     |     |          |
|         | 2.70:1.Calculate the engine power needed and the speed of the engine                             |       |     |     |          |
|         | in RPM. Assume transmission efficiency of 0.90.                                                  |       |     |     |          |
|         | UNIT - II                                                                                        | 18    |     |     |          |
|         | Enumerate the different methods of carrying out traffic volume studies.                          |       | T 0 | 002 |          |
|         | Indicate the principle of each.                                                                  | 9     | L2  | CO2 | PO3,4    |
|         | Explain spot speed, running speed, space mean speed, time mean speed                             | 6     |     | ~~* |          |
|         | and average speed. How spot speed studies are carried out.                                       | 9     | L2  | CO2 | PO3,4    |

P18CV644 Page No... 2 c. A vehicle of weight 4 tonnes skids through a distance equal to 40 m before colliding with another parked vehicle. The weight of which is 75% of the former. After collision if both the vehicles skids through 9 L3 CO2 PO3,4 14 m before stopping. Compute the initial speed of moving vehicle. Assume friction coefficient of 0.62. **UNIT - III** 18 4 a. Explain grade separated intersection with its advantage and limitations. 9 L3 CO3 PO3,7 b. Explain briefly the various design factors to be considered in rotary 9 L3 CO3 PO3,7 intersection design. 9 c. List the various measures adopted to increase pedestrian safety. L2 CO3 PO3,7 **UNIT - IV** 18 5 a. Describe the measures adopted to control air pollution from 9 L2 CO4 PO4,5,11 automobiles. b. Describe the deleterious effect of noise on human health. 9 L2 CO4 PO4,5,11 9 Briefly discuss the different causes of traffic accidents. L2 CO4 PO4,5,11 UNIT - V 18 9 6 a. List the traffic regulatory measures and explain them in brief. L1 CO4 PO4,5,11 Describe the various strategies involved in traffic demand management. 9 L2 CO4 PO4,5,11 Explain the importance and applications of ITS in traffic engineering. 9 L2 CO4 PO4,5,11