U.S.N				
P.E.S. College of Engineering, Mandya - 571 401				
(An Autonomous Institution affiliated to VTU, Belagavi)				
Eighth Semester, B.E Civil Engineering				
Semester End Examination; July - 2023				
Earthquake Resistant Design of Structures				
Time: 3 hrs	Max. Marks: 100			

Page No... 1

The Students will be able to:

CO1: Understand the basic knowledge of earthquakes and its relation to structural systems. CO2: Apply the knowledge of engineer conception and design of structural systems against earthquakes. CO3: Analyze the design of reinforcement concrete structural systems subjected to earthquake forces. CO4: Summarize the retrofitting of RC and Masonry structures.

Course Outcomes

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>*Two*</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit. *III) IS-1893 Part–I* (2016) is permitted, Assume any missing data.

Q. No.	Questions	Marks	BLs COs POs
	I : PART - A	10	
1 a.	What is Inter plate and Intra plate earthquake?	2	L1 CO1 PO1,2
b.	What is storey?	2	L1 CO2 PO1,3
c.	Define design basis earthquake.	2	L1 CO3 PO2,3
d.	What is curvature ductility?	2	L1 CO4 PO1,4
e.	What is shortcrete?	2	L1 CO4 PO1,4
	II : PART - B	90	
	UNIT - I	18	
2 a.	Describe briefly the direct and indirect effects of earthquake.	9	L2 CO1 PO1,2
b.	Explain the two measures of earthquake,		
	i) Earthquake magnitude	9	L1 CO1 PO1,2
	ii) Earthquake intensity		
с.	What is site effect? Explain its significance in earthquake resistant	9	L2 CO1 PO1,2
	design of structure.	7	L2 COT 101,2
	UNIT - II	18	
3 a.	Discuss the architectural requirements of earthquake resistant	9	L2 CO2 PO1,3
	construction giving emphasis on plan irregularities problems.)	12 002 101,5
b.	List various characteristics of buildings influencing the performance	9	L2 CO2 PO1,3
	of buildings during earthquake and explain any four of them in detail.	2	12 002 101,5
c.	Explain with sketches, various lateral loads resisting system adopted	9	L2 CO2 PO1,3
	in structures.	7	12 002 101,5

P18CV	P18CV821 Page No 2			
	UNIT - III	18		
4 a.	A six storied OMRF building without brick infill panel proposed to be			
	constructed in an area of earthquake zone V is proposed for a radio			
	station. All the single bay portal frames are of span 6 m and height of			
	each floor being 4 m. The total lumped mass at all the floors is	12	L3 CO3 PO2,3	
	4000 kN while that at roof level is 2400 kN. Soil below the			
	foundation is medium soil. Calculate the total base shear and plot the			
	distribution of base shear along the height of the floor.			
b.	A 4 storied SMRF RCC office building located is zone V resting on			
	hard rock. Compute the seismic forces as per IS-1893-part 1-2016.			
	Height of first storey is 4.2 m and the remaining three stories are of			
	height 3.2 m each. Plan dimensions length and width of the structure			
	are 15 m \times 20 m. The RCC frames are filled with brick masonry.	12	L2 CO3 PO2,3	
	Dead load on floor = 12 kN/m^2 and on roof 10 kN/m^2			
	Live load on floor = 4 kN/m^2 and on roof 1.5 kN/m ²			
	Computer the base shear and plot the distribution of base shear along			
	the height of the building.			
c.	Briefly explain the earthquake resistant and design philosophy.	6	L2 CO3 PO2,3	
	UNIT - IV	18		
5 a.	What is ductility of a structure and why it is required? What are the	9	L2 CO2 PO2,3	
	advantages of ductility?	,	12 002 102,3	
b.	Explain in detail with neat sketches the ductile detailing provision for	9	L2 CO3 PO2,3	
	flexural members.	2		
c.	Define liquefaction. What are the factors that affect liquefaction	9	L1 CO3 PO2,3	
	characteristics?		,-	
	UNIT - V	18		
6 a.	Write a short note on following:			
	i) Isolation devices	9	L2 CO4 PO1,4	
	ii) Energy dissipation device			
b.	Explain the conventional method adopted in retrofitting of	9	L2 CO4 PO1,4	
	RC buildings.			
c.	Explain various modes of failure of masonry buildings with	9	L2 CO4 PO1,4	
	neat sketches.			