P18CV	824		P	age N	o 1			
	U.S.N							
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Eighth Semester, B.E Civil Engineering Semester End Examination; July - 2023 Pavement Analysis and Design								
Time: 3 hrs Max. Marks: 100 Course Outcomes								
 The Students will be able to: CO1 - Apply the knowledge of science and engineering to acquire the fundamentals of various factors affecting design and performance of pavements CO2 - Calculate the stresses and deflection in flexible pavements. CO3 - Calculate the stresses and deflection in rigid pavements. CO4 - Design flexible and rigid pavements. <u>Note</u>: I) PART - A is compulsory. Two marks for each question. II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit. 								
Q. No.	Questions	Marks			POs			
_	I:PART - A	10		<i></i>				
I a.	What is contact pressure in design of pavement?	2	L1	COI	PO1,3			
b.	With a sketch, describe the critical stresses and strains in elastic three	2	L1	CO2	PO3,6			
	layer system.							
с.	Write the equation to calculate the cumulative number of standard axles/lanes/day.	2	L1	CO3	PO3,6			
d.	List the factors affecting design and performance of CC pavements.	2	L1	CO4	PO2,3,6			
e.	With a sketch, describe the load transfer with and without dowel bar.	2	L1	CO4	PO2,3,6			
	II : PART - B	90						
1 a.	UNIT - I What is the design factors considered in the design of pavement?	18						
1 a.	Explain any three in detail.	9	L1	CO1	PO1,3			
b.	Compare the salient features of flexible and rigid pavements.	9	L2	CO1	PO1,3			
с.	Explain the significance of ESWL in pavement design	9	L1	CO1	PO1,3			
	UNIT - II	18						
2 a.	Explain briefly the principle of Burmister's two-layer theory and							
	mention the advantages over the elastic single layer theory for the	9	L1	CO2	PO3,6			
	analysis of flexible pavements.							
b.	A flexible pavement of thickness 60 cm is laid over a subgrade. A							
	circular load of radius 15 cm with uniform contact pressure							
	7.5 Kg/cm ² is applied. Assuming homogeneous elastic single layer,							
	determine the deflection of the pavement surface under the center of	9	L3	CO2	PO3,6			
	the load;							

P18CV824			Page No 2		
	i) Using the formula				
	ii) Using deflection factor chart				
	Assume the elastic modulus of the subgrade as well as pavement layer				
	to be 850 Kg/cm ² .				
с.	Explain how the elastic moduli of subgrade and base course are	0	т 1		
	estimated using plate bearing test data?	9	L1	CO2 PO3,6	
	UNIT - III	18			
3 a.	Enumerate the various approaches of flexible pavement design.	0	1.0		
	Briefly indicate the basis of design in each case.	9	L2	CO3 PO3,6	
b.	Explain briefly the CBR method of flexible pavement design as per	0	т 1		
	IRC guidelines.	9	L1	CO3 PO3,6	
с.	Design a new flexible pavement for a two-lane undivided carriage				
	way using the following data:				
	Design CBR value of subgrade = 8.0%	0	т 2	CO2 DO2 6	
	Initial traffic on completion of construction = 1800 CV per day,	9	L3	CO3 PO3,6	
	Average growth rate = 6.0% per year, Design life = 15 years,				
	VDF value = 2.5				
	UNIT - IV	18			
4 a.	Write Westergaard's load stress equation at critical region and discuss	9	L2	CO4 PO2,3,6	
	critical combination of stresses.)	L2	004 102,3,0	
b.	Explain how warping stresses are formed in CC pavements. Describe			PO2,	
	the Bradbury's equations to calculate warping stresses at critical	9	L1	CO4 3,6	
	locations.			5,0	
с.	Using the data given below, calculate the wheel load stresses at,				
	i) Interior, ii) Edge, iii) Corner regions of a CC pavements using				
	Westergaard's stress equation and also determine iv) the probable				
	location where the crack is likely to develop due to corner loading.	9	L3	CO4 PO2,3,6	
	Wheel load $P = 5100$ Kg, Modules of elasticity of cement concrete,	,	20	001102,0,0	
	$E = 3.0 \times 10^5$ Kg/cm ² . Pavement thickness h = 25 cm, poisson's ratio of				
	concrete = 0.15. Modulus of subgrade reaction, $K = 12 \text{ kg/cm}^2$, radius				
	of contact area = 16 cm .				
	UNIT - V	18			
5 a.	What are the objects of providing dowel bars and tie bars in CC	9	L1	CO4 PO2,3,6	
	pavements? Explain.			- ,-,~	
b.	Write a note on;	9	L1	CO4 PO2,3,6	
	i) Spacing of joints ii) White tapping			7- 7 -	

P18CV824

c. A cement concrete pavement has a thickness of 28cm and lane width Of 3.5m. Design the tie bars along the longitudinal joints using the given data below: Allowable working stress in steel Tie bar, $S_s = 1250 \text{ Kg/cm}^2$ Unit weight of CC W = 2400 Kg/m³ Maximum value of friction coefficient, f = 1.4 Allowable tensile stress in deformed tie bar $S_s = 2400 \text{ Kg/cm}^2$ Allowable bond stress in deformed bar $S_b = 24.6 \text{ Kg/cm}^2$

* * * *