

iv) Total power delivered to a load of 100 Ω

 Mathematically illustrate time domain expression for WBFM wave which has infinite sidebands.
 9 L3 CO4 PO2

P18EC42			Page No 2		
	UNIT - II	18			
3 a.	List and explain the properties of auto-correlation function.	9	L2	CO1	PO1
b.	Classify and explain the different types of digital communication channels.	9	L2	CO2	PO2
с.	Illustrate the concept of Gram-Schmidt orthogonalization procedure.	9	L3	CO4	PO2
	UNIT - III	18			
4 a.	Describe the quadrature sampling of band pass signal with related block diagram, spectrum and equations.	9	L3	CO2	PO2
b.	Define eye pattern and explain how it is useful in understanding the ISI problem?	9	L2	CO1	PO1
с.	 A signal g(t) = 10cos(20πt) cos(200πt) is sampled at the rate of 250 samples/s; i) Sketch the spectrum of the sampled signal ii) Specify the cut-off ideal reconstruction filter so as to recover g(t) from g_s(t) 	9	L3	CO3	PO2
	iii) Specify the Nyquist rate for the signal $g(t)$				
	UNIT - IV	18			
5 a.	Derive an expression for Signal to quantization noise ratio in PCM.	9	L3	CO4	PO2
b.	With block diagrams, explain DPCM transmitter and receiver.	9	L2	CO3	PO2
c.	Explain adaptive delta modulation with neat block diagram and equations.	9	L2	CO1	PO1
	UNIT - V	18			
6 a.	Derive probability of error for a coherent PSK system.	9	L3	CO2	PO1
b.	With block diagrams, explain the working of DPSK transmitter and receiver.	9	L2	CO1	PO2
c.	Describe the QPSK signal with its signal space characterization with a neat block diagram and explain the generation and detection of QPSK signals.	9	L3	CO3	PO2

* * * *