P18EC44

Semester End Examination; August - 2023

Digital Signal Processing

Time: 3 hrs

Q.

Course Outcomes

Max. Marks: 100

The Students will be able to: CO1: Apply mathematical knowledge to understand DFT, FFT and Filters CO2: Analyze discrete systems using DFT, FFT and filtering formulation

CO3: Design the FIR & IIR filters for given specification

CO4: Implement the discrete-time systems using various approaches

CO5: Understand role of DSP in various applications

<u>Note</u>: I) PART - A is compulsory. Two marks for each question.
II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

. No.	Questions	Marks BLs COs

	I : PART - A	10	
1 a.	Compute the 4 points circular convolution of $x[n] = \{1, 2, 3\}$ and $h[n] = \{2, 4\}$ using matrix method.	2	L2 CO1
b.	Calculate the number of addition and multiplication required to compute the 64 point DFT of Sequence using Radix-2 FFT method.	2	L2 CO2
c.	Differentiate between Hamming and Hanning window.	2	L3 CO1
d.	Explain the relationship between analog and digital frequency in Bilinear transformation.	2	L1 C01
e.	List four stages involved in processing of biomedical signals.	2	L1 CO5
	II : PART - B	90	
	UNIT - I	18	
2 a.	Given a filter has impulse response $h(n) = \{3, 2, 1\}$ and input $x(n) = \{2, 1, -1, -2,, n\}$		
	-3, 5, 6, -1, 2, 0, 2, 1. Determine the output $y(n)$ of the filter using overlap-save	9	L2 CO1
	method for a block length of 5.		
b.	State and prove the following properties of DFT:		
	i) Circular convolution ii) Parseval's relation	9	L2 CO2
c.	An FIR filter has impulse response $h(n) = \{1, 2, 3\}$. Find the output of the filter	0	12 002
	for the input $x(n) = \{1, 2\}$, using DFT and IDFT method.	9	L3 CO2
	UNIT - II	18	
3 a.	Compute the 8 point DFT of the sequence $x(n) = (2, 1, 2, 1, 1, 2, 1, 2)$ using	9	
	radix 2 DITFFT.	9	L2 CO3
b.	Develop the chart of DIF – FIT algorithm for a 8 point sequence starting from	9	L2 CO2
	basic definition DFT.	9	L2 CO2
	Contd2		

P18EC44		Page	e No 2		
c.	Compute the IDFT of sequence $x(k) = \{0, 2 + j2, -j4, 2 - j2, 0, 2 + j2, j4, 2 - j2\}$	9	L4 CO3		
	using Radix-2 algorithm.	7	L4 CO3		
	UNIT - III	18			
4 a.	Design a linear phase FIR high pass filter using hamming window with a cut off				
	frequency of $w_c = 0.8 \pi$ rad/sample and N = 7, considering symmetric impulse				
	response,	9	L2 CO3		
	$H_{d}\left(e^{jw}\right) = \frac{e^{-jw\alpha}; \text{ for } -\pi \leq w \leq -w_{c} \text{ and } w_{c} \leq w \leq \pi}{0 \text{ otherwise}}$				
b.	Design a FIR low pass filter with cut off frequency of 1 kHz and sampling				
	frequency of 4 kHz with 11 samples using Fourier series method and implement	9	L2 CO3		
	the filter structure.				
c.	Design an ideal differentiator with frequency response $H(e^{jw}) = jw$ $-\pi \le w \le \pi$	9 I	L3 CO3		
	using (i) rectangular window with $N = 7$ and determine the transfer function.	,	15 005		
	UNIT - IV	18			
5 a.	Design a digital Butterworth High pass filter using bilinear transformation by				
	taking $T = 0.1$ second, to satisfy the following specification,	9	L3 CO3		
	$0.6 \le H(e^{jw}) \le 1.0$; for $0.7\pi \le w \le \pi$	2			
	$ H(e^{jw}) \le 0.1$; for $0 \le w \le 0.35\pi$				
b.	Design a Chebyshev low pass filter with the ripple of 1 dB in the pass band				
	$0 \le w \le 0.2\pi$ and attenuation of at least 15 dB in the stop band $0.3\pi \le w \le \pi$,	9	L3 CO3		
	using impulse invariant method.				
c.	Derive an expression for;				
	i) Order of Butterworth filter N	9	L2 CO3		
ii) Cut off frequency Ω_c of Butterworth LPF					
	UNIT - V	18			
6 a.	Realize the following system function in Direct form-I, Direct II and				
	cascade from,	9	L2 CO4		
	y(n) = -0.1 y(n-1) + 0.2y(n-2) + 3x(n) + 3.6x(n-1) + 0.6x(n-2).				
b.	Realize the following system in parallel from,	9	L1 CO5		
	$y(n) = 0.75 \ y(n-1) - 0.125y(n-2) + 6x(n) + 7x(n-1) + x(n-2)$				
c.	With a basic block diagram, explain DSP based video signal processing system.	9	L3 CO5		

* * * *