U.S.N

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Fourth Semester, B.E. - Electronics and Communication Engineering Semester End Examination; August - 2023 Electromagnetic Field Theory

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1: Apply the knowledge of physics and Vector calculus to understand EM fields and waves.
- CO2: Analyse Electric and magnetic fields and waves and its effect in various charge distribution of medium.
- CO3: Compute the electric and magnetic field potentials due to different charge distributions and boundary conditions.
- CO4: Analyze time-varying electromagnetic fields and waves as governed by Maxwell's equations.
- CO5: Examine the effects and losses of medium on wave and various parameters influencing wave propagation.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

11) TART - B. Answer any $\frac{1wo}{2}$ sub-questions (from a, b, c) for a Maximum of 16 marks from each unit.									
Q. No.	Questions	Marks	BLs	COs	POs				
	I:PART-A	10							
1 a.	Convert $x = 2$ m, $y = 3$ m and $z = 5$ m to Spherical co-ordinate system.	2	L3	CO2	PO1,2				
b.	Define Electric Dipole and Dipole Movement.	2	L2	CO3	PO1,2				
c.	Write the Lorentz Force equation.	2	L3	CO2	PO1,2				
d.	Find the skin effect in a medium with attenuation constant of 0.5 units.	2	L3	CO4	PO1,2				
e.	Define Critical Frequency.	2	L2	CO1	PO2				
	II : PART - B	90							
	UNIT - I	18							
2 a.	State Coulombs law. A charge of $Q_1 = 3 \times 10^{-4} \text{C}$ at M (1, 2, 3) and a								
	charge of $Q_2 = -10^{-4}$ C at N(2, 0, 5) in a vaccum. Determine the vector	9	L3	CO1	PO1				
	force exerted on Q_2 by Q_1 .								
b.	Derive an expression for Electric field intensity E due to infinite sheet.	9	L2	CO2	PO1,2				
c.	State and Prove Divergence theorem.	9	L4	CO2	PO1,2				
	UNIT - II	18							
3 a.	Define Absolute Potential. Calculate Absolute potential at point								
	A(2, 2, 3) m due to a point charge $Q = 0.4$ nc is located at;	9	L4	CO3	PO2,3				
	i) Origin ii) N(2, 3, 3) m								
b.	Derive the relation between ${\bf E}$ and ${\bf V}$. Find the Electric field strength for	9	1.2	CO3	PO2,3				
	the scalar field $V = 4xz^2 + 3yz$.	9	L	CO3	1 02,3				
c.	State and Prove Uniqueness theorem.	9	L2	CO3	PO2,3				
	UNIT - III	18							
4 a.	State Ampere's Circuital law. Determine H due to infinite long straight conductor and infinite sheet by applying Ampere's Circuital law.	9	L2	СОЗ	PO2,3				

P18EC46			Page No 2	
b.	In Cylindrical Coordinates $A = 30r^2$ a_z wb/m is a vector magnetic potential, in a certain region of free space. Find H, B and J.	9	L3	CO3 PO2,3
c.	Illustrate Magnetic boundary conditions for tangential and normal component.	9	L2	CO3 PO2,3
	UNIT - IV	18		
5 a.	List and Explain Maxwell's equations in point and integral form for time varying field.	9	L2	CO4 PO2
b.	Discuss wave propagation in good conductors while highlighting the related equations.	9	L2	CO4 PO2
c.	State and Prove Poynting's theorem.	9	L4	CO5 PO1,2
	UNIT - V	18		
6 a.	Discuss the tilt of wave due to ground losses.	9	L2	CO5 PO1,2
b.	Explain the effects of imperfect earth and the effects of curvature of earth.	9	L2	CO5 PO1,2
c.	Describe the terms MUF, LUF, Virtual height and Skip distance.	9	L2	CO5 PO1,2