	U.S.N									
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Sixth Semester, B.E Electronics and Communication Engineering Semester End Examination; August - 2023										
Time: 3 hrs Microwaves and Antennas Max. Marks: 100										
Course Outcomes										
CO1: A a CO2:Ar A CO3: E d CO4: A	dents will be able to: pply the knowledge of mathematics and EM fields to understand the ntennas, properties of microwave devices and transmission lines. adyse the working and performance of microwave transmission lines, micr pplying basic concepts of Microwave theory fxamine the working and performance of microwave sources, microwav ifferent types of antennas. nalyse the working and performance of microwave devices and antenna arr esign of helical, log-periodic and micro strip antennas	owave I ve trans	C's a	nd ant	ennas					
-	<i>PART-A</i> is compulsory. <i>Two</i> marks for each question.									
	I) PART-B : Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.									
Q. No.	Questions	Marks	BLs	COs	POs					
	I:PART - A	10								
1 a.	A transmission line has series impedance of	_								
	$Z = 0.8 + j75.4 \Omega$ and shunt admittance of $Y = (0.8 + j3) \times 10^{-3}$ mho.	2	L3	CO2	PO2					
b.	Calculate; i) Propagation constant ii) Attenuation constant. Write any two differences between tunnel diode and normal <i>P-n</i>	2	L2	CO3	DO1					
	junction diode.	2	L2	COS	FU2					
c.	A directional antenna has a maximum electrical dimension of 50 m and									
	the wavelength is 3 m. A field is measured at 1 km from the antenna. Is it	2	L3	CO3	PO2					
	near or far field?									
d.	For two elements array write equation for total of the array and array factor.	2	L3	CO4	PO2					
0	Define normal mode and axial mode of operation of helical antenna.	2	12	CO3	DOJ					
U.	II : PART - B	2 90		05	102					
	UNIT - I	18								
2 a.	Discuss the mismatch losses in transmission line along with related	10								
2 a.	equations.	9	L3	CO3	PO2					
b.	Explain the fabrication steps followed in thick film deposition method of MIC manufacturing.	9	L2	CO2	PO2					
c.	A 50 Ω lossless line connects a matched signal of 100 kHz to a load of									
υ.	100 Ω . The load power is 100 mW. Calculate the;	9	JA	CO2	PO2					
		,	LT	02	102					

P18EC63

- i) Voltage reflection coefficient of the load
- ii) VSWR of the load
- iii) Position of the first V_{min} and V_{max}
- iv) Impedance at V_{min} and V_{max}
- v) Values of V_{max} and V_{min}

	UNIT - II	18			
3 a.	Analyze the working of precision-type variable attenuator with related	9	T A	CO4	DOJ
	diagrams and write the equation for its attenuation factor.	9	L4	C04	FO2
b.	Discuss the characteristics of Magic-T and derive its S-matrix.	9	L4	CO4	PO2
c.	Explain the transferred electron effect along with its V-I characteristics				
	and also explain the TT mode and LSA mode of operation of	9	L3	CO3	PO2
	Gunn Diode.				
	UNIT - III	18			
4 a.	Define a parameter directivity and radiation intensity of antenna is given				
	by $B_0 \cos\theta$ w/m ² . Determine the total radiated power and maximum	9	L4	CO3	PO2
	directivity of the antenna, if $0 \le \phi \le 2\pi$ and if $0 \le \theta \le \pi/2$.				
b.	Explain antenna efficiency, Beam efficiency and antenna radiation	9	L3	CO3	DOJ
	efficiency along with related equations.	9	LJ	COS	102
c.	Discuss the following terms with respect to antenna with related equation	9	ТЛ	CO3	PO2
	and diagram; i) Radiation pattern ii) HPBW and FNBW iii)Bandwidth	2	L+	005	102
	UNIT - IV	18			
5 a.	Derive the equation for power density and radiation resistance of	9	Ι4	CO3	PO2
	infinitesimal dipole.	,	LI	005	102
b.	Derive the equation for directivity of N-element linear Broadside array.	9	L4	CO4	PO2
c.	Discuss the following field distribution due to infinitesimal dipole;	9	I 4	CO3	PO2
	i) Near-field region ii) Intermediate field region iii) Far-field region	,	1	000	102
	UNIT - V	18			
6 a.	Discuss the design procedure of Helical antenna along with neat diagram	9	L4	CO5	PO3
	and related equations.	-			
b.	Explain the working principle of following type of antenna:				
	i) Log-periodic dipole array	9	L4	CO5	PO3
	ii) Planar and Wire logarithmically periodic antenna				
c.	Design a rectangular micro strip antenna using a substrate with dielectric	9	L4	CO5	PO3
	constant of 2.2, $h = 0.1588$ cm so as to resonate at 10 GHz.	-			