U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Sixth Semester, B.E - Electronics and Communication Engineering Semester End Examination; August - 2023 Introduction to Basics of Information Technology

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1: Will be able to formulate computer arithmetic and understand the performance requirements of systems
- CO2: Will understand the functions and objectives of operating system
- CO3: Will be able to identify the problems related to task synchronization and deadlock
- CO4: Will use appropriate data structures like arrays, linked list, stacks and queues to solve real world problems efficiently.
- CO5: Will be able to represent and manipulate data using nonlinear data structures like trees to design algorithms for various applications

Note: I) **PART - A** is compulsory. **Two** marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

Q. No.	Questions I : PART - A	Marks 10	BLs	COs	POs
1 a.	Give the carry equations C1, C2, C3, C4 for a 4-bit carry lookahead	2	L1	CO1	PO1
	adder.	_			
b.	Give any four reasons for process termination.			CO2	PO1
c.	What are the three operations performed on semaphores?			CO3	PO1
d.	What is a Queue?			CO4	PO1
e.	What is Leaf? Define Binary tree.	2	L1	CO5	PO1
	II : PART - B	90			
	UNIT - I	18			
2 a.	Explain the working of a 4-bit carry-lookahead adder.	9	L3	CO1	PO1
b.	Illustrate and explain the Binary addition/subtraction logic circuit.		L2	CO1	PO1
c.	Multiply 01101×1010 (Hint +13×-6) using,		L3	CO1	PO2
	i) Booth algorithm ii) Bit-Pair recoding of multipliers	9	L3	COI	102
	UNIT - II	18			
3 a.	List the service provided by OS. Explain any two of them.	9	L2	CO2	PO1
b.	Illustrate and explain five-state process model.	9	L2	CO2	PO1
c.	Illustrate and explain the elements in a Process Control Block.	9	L2	CO2	PO1
	UNIT - III	18			
4 a.	Explain the conditions for deadlock and how it can be prevented.	9	L2	CO3	PO2
b.	Explain the dining philosopher's problem.	9	L2	CO3	PO1
c.	Explain the three placement algorithms with suitable illustrations.		L2	CO3	PO1

P18EC643				Page No 2			
	UNIT - IV						
5 a.	What are the basic structures used to implement an ADT? Explain in detail.	9	L2	CO4	PO3		
b.	Illustrate and explain the three basic stack operations.			CO4	PO2		
c.	Illustrate and define the following basic queue operations: i) Dequeue ii) Queue front	9	L2	CO4	PO2		
	UNIT - V	18					
6 a.	Define a tree and explain the terminologies used with illustrations.		L2	CO5	PO1		
b.	Write algorithms for finding largest node and smallest node using BST.		L2	CO5	PO2		
c.	Analyze and write the algorithm for sequential circuits.		L2	CO5	PO2		

* * * *