U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Eighth Semester, B.E. - Electronics and Communication Engineering Semester End Examination; July - 2023 Satellite Communication

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1: Recall the fundamentals of orbital mechanics, the characteristics of common orbits used by communications another satellite.
- CO2: Understand the systems required by a communications satellite to function and the trade-offs and limitations encountered in the design of a communications satellite system.
- CO3: Model the concepts of signal propagation affects, link design, rain fading and link availability and perform interference calculations.
- CO4: Calculate an accurate link budget for a satellite or other wireless communication networks.
- CO5: Understand the analog and digital technologies used for satellite communication networks.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

Q. No.	Questions	Marks	BLs	COs	POs
	I : PART - A	10			
1 a.	Calculate the time in days, hours, minutes and seconds for the epoch	2	L2	CO1	D ∩1
	day 225.89854156.	2	L	COI	101
b.	In a travelling -wave tube amplifier, what are the different elements				
	used to form an electron beam and how it is going to confine inside of	2	L1	CO2	PO1
	a wire helix.				
c.	Write a diagram which shows acquisition of a carrier in a	2	L1	CO3	PO1
	CDMA system.	2			
d. C	Calculate the gain in decibels of a 3-m parabolaidal antenna operating	2	L2	CO4	PO1
	at a frequency of 12 GHz. Assume an aperture efficiency of 0.55.	2			
e.	Why forward error correction is must in DBS TV and what are the	2	L1	CO5	PO1
	different types of codes used to correct different errors?		Lı	CO3	101
	II : PART - B				
	UNIT - I	18			
2 a.	Explain different causes of orbital perturbations.	9	L2	CO1	PO1
b.	State and explain Kepler's law of planetary motion with neat diagram	9	L2	CO1	PO1
	and necessary equations.		122	COI	101
c.	Derive an expression for determining the azimuth and elevation angle	9	L3	CO1	PO2
	of satellite antenna.		LJ	COI	102
	UNIT - II	18			
3 a.	Briefly illustrate the function of antenna subsystem.	9	L3	CO2	PO2

P18EC821		Page No 2			o 2
b.	With the aid of a block diagram, briefly describe the functioning of				
	the satellite TV/FM receiving system intended for the home	9	L2	CO2	PO2
	reception.				
c.	Describe different propagation effects that are not associated with	0	1.0	CO2	DO2
	hydrometeors.	9	L2	CO2	PO2
	UNIT - III	18			
4 a.	With relevant sketches, explain the following:				
	i) Carrier recovery	9	L2	CO3	PO1
	ii) Network synchronization				
b.	Explain the frame and burst formats for a TDMA system.	9	L2	CO3	PO1
c.	Briefly explain frequency modulation technique for satellite link.	9	L2	CO3	PO1
	UNIT - IV	18			
5 a.	Derive an expression for system noise temperature (T _s) when	9	L3	CO4	DO2
	amplifiers are in cascaded form.	9	L3	C04	102
•	Explain the "Bent pipe" satellite relays system with its layer	9	L2	CO4	PO2
	architecture.	9	L	CO4	102
c.	With a neat diagram, explain the TCP/IP satellite link spoofing	9	L2	CO4	P ∩1
	configuration.	9	L	CO4	101
	UNIT - V	18			
6 a.	Explain the following:				
	i) Transponder capacity	9	L2	CO5	PO1
	ii) Bit rates for digital television				
b.	Explain in detail the working of MPEG-2 encoder paths.	9	L2	CO5	PO1
c.	Describe the features and advantages of Iridium system.	9	L2	CO5	PO2