

Time: 3 hrs

Max. Marks: 100

Course Outcomes

The Students will be able to: CO1: Explain the basics of Electronic Communication System.

CO2: Analyse at block level the use of various Digital Communication Techniques and Satellite Communication.

CO3: Describe the concept of Networking and Local Area Networks.

CO4: Explain the importance and working of Cell phone, multiplexing and de multiplexing in electronic communication systems.

CO5: Understand the use and working of wireless technologies.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

Q. No.	Questions	Marks	BLs	COs	POs
1	I: PART - A	10	т 1	001	
1 a.	Compare simplex and duplex communication.	2	L1	CO1	PO1
b.	Write the waveforms of phase modulation.	2	L1	CO2	PO2
c.	Describe time division multiplexing.	2	L1	CO4	PO1
d.	Write the frequency spectrum used in satellite communication.	2	L1	CO4	PO1
e.	Define handoff in cellular communication.	2	L1	CO5	PO1
	II : PART - B	90			
	UNIT - I	18			
2 a.	With a neat block diagrams, discuss the different modulation and	9	L2	CO2	PO2
	demodulation techniques.	,		002	1.02
b.	An antenna has an impedance of 40 V. An un-modulated AM signal				
	produces a current of 4.8 A. The modulation is 90 percent, calculate;	9	L2	CO2	PO2
	(i) The carrier power, (ii) The total power, and (iii) The sideband power				
c.	With relevant circuit diagrams and waveforms, explain the Amplitude	9 9	10	CO 2	PO2
	modulation and demodulation.	9	L2	CO2	PO2
	UNIT - II	18			
3 a.	Explain the Noise suppression effects of frequency modulation.	9	L3	CO2	PO2
b.	The input to an FM receiver has an S/N of 2.8. The modulating				
	frequency is 1.5 kHz. The maximum permitted deviation is 4 kHz. What	0	L3	CO2	PO2
	are (i) the frequency deviation caused by the noise and (ii) the improved	9			
	output S/N?				
c.	Explain how preemphasis is used to solve the problem of the	0			
	interference of high-frequency components by noise.	9	L2	CO2	PO2

P18ECO652			Page No 2		
	UNIT - III	18			
4 a.	Explain the how frequency division multiplexing is used in Telemetry applications.	9	L3	CO4	PO1
b.	With relevant diagram and waveforms, explain how a time-division multiplexer used to produce pulse-amplitude modulation.	9	L3	CO4	PO1
c.	Describe how repeaters, transceivers, hubs, bridges, routers, and gateways are used in LANs?	9	L2	CO3	PO3
	UNIT - IV	18			
5 a.	Draw a block diagram of the satellite communication system and explain how it works?	9	L2	CO2	PO1
b.	Draw general block diagram of an earth station and explain.	9	L2	CO2	PO1
c.	Explain Direct Broadcast Satellite (DBS) receiver with a neat diagram.	9	L2	CO2	PO1
	UNIT - V	18			
6 a.	Explain the various components of 2G digital cell phone with a neat block diagram.	9	L2	CO5	PO1
b.	Describe the various Technicalities of Long Term Evolution (LTE).	9	L3	CO5	PO1
c.	Write short notes on ZigBee and Mesh Wireless Networks.	9	L2	CO5	PO1

* * * *