

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi) Fourth Semester, B.E. - Electrical and Electronics Engineering Semester End Examination; August - 2023

Electrical Machines - I

Course Outcomes

Max. Marks: 100

The Students will be able to:

CO1: Analyze the basic operation and construction of different types of transformers

CO2: Illustrate the various performance parameters of a single phase and three phase transformer

CO3: Evaluate and assess the various tests to be conducted on a transformer

CO4: Analyze the construction, operation and performance of various types of single phase induction motors

CO5: Analyze the construction, operation and performance of various types of three phase induction motors

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

Q. No.	Questions	Marks	BLs COs
	I : PART - A	10	
1 a.	Mention the two types of a 1- φ transformer.	2	L1 CO1
b.	Give the expression for regulation and efficiency of a 1- ϕ transformer.	2	L1 CO2
c.	List out the advantages of 3- φ transformer.	2	L1 CO3
d.	Give an expression for torque developed by an induction Motor.	2	L1 CO4
e.	What is meant by cogging and crawling in an Induction Motor?	2	L1 CO5
	II : PART - B	90	
	UNIT - I	18	
2 a.	Derive an expression for EMF induced in a 1- ϕ transformer. Explain the concept of transformer on load with suitable vector diagram for lagging power factor.	9	L3 CO1
b.	Explain the construction of a core type $1-\phi$ transformer. Derive an expression for copper saving in an auto transformer, compared to two winding transformer.	9	L2 CO1
c.	A 50 kVA, 4400/220 V transformer has $R_1 = 3.45 \Omega$, $R_2 = 0.09 \Omega$, $X_1 = 5.2 \Omega$,		
	$X_2 = 0.015 \Omega$, calculate;		
	i) Equivalent resistance referred to primary and secondary	9	L3 CO1
	ii) Equivalent reactance referred to primary and secondary	7	LJ COI
	iii) Equivalent impedance referred to primary and secondary		
	iv) Total ohmic loss		
	UNIT - II	18	
3 a.	Derive an expression for regulation of a transformer for;	9	L3 CO2
	i) Lagging power factor ii) Zero power factor	9	L3 CO2
b.	Explain the losses in a transformer. Derive the condition at which efficiency of the		
	transformer is maximum.		

P18EE44		Page	e No 2
c.	A 5 kVA, 500/250 V, 50 Hz, 1- φ transformer have the following data:		
	OC test : 500 V, 1 A, 50 W (LV side)		
	SC test : 25 V, 10 A, 60 W (LV side)		
	Determine;	9	L3 CO2
	i) Efficiency on full load @ 0.8 p.f. lag	9	L3 C02
	ii) Voltage regulation on FL @ 0.8 p. f lead		
	iii) Efficiency on 60% of FL @ 0.8 p.f lead		
	iv) Draw the equivalent circuit referred to primary		
	UNIT - III	18	
4 a.	With the help of circuit and phasor diagram, explain how 2- ϕ supply can be	9	L3 CO3
	obtained from 3-φ supply using Scott connection.	,	15 005
b.	Show that open-delta connection has a kVA rating of 58% of the rating of the	9	L2 CO3
	normal delta-delta connection.	,	12 005
c.	A 1- ϕ , 3- winding transformer have the following results from three short		
	circuit test:		
	Secondary shorted, primary excited: 125 V, 25 A, 700 W		
	Tertiary shorted, primary excited: 130 V, 25 A, 800 W		
	Tertiary shorted, secondary excited: 30 V, 120 A, 830 W	9	L3 CO3
	The rating of windings are as follows:	,	25 005
	Primary : 100 kVA, 3300 V		
	Secondary : 50 kVA, 1100 V		
	Tertiary: 50 kVA, 400 V		
	Find the resistance and leakage reactance of star-equivalent circuit.		
	UNIT - IV	18	
5 a.	With relevant sketches, explain the concepts of rotating magnetic field in $3-\phi$	9	L2 CO4
	Induction Motor.		
b.	Explain the necessity of a starter. With neat circuit, explain Direct Online (DOL)	9	L2 CO4
	starter for a $3-\phi$ Induction Motors.		
c.	Derive an expression for torque developed by an Induction motor. A 24 pole,		
	50 Hz, star connected Induction Motor has rotor resistance of 0.016Ω per phase		
	and rotor reactance of 0.265 Ω per phase at standstill. It is achieving its full load	9	L3 CO4
	torque at a speed of 247 rpm. Calculate the ratio of full load torque to maximum		
	torque.		

P18EE44		Page No 3	
	UNIT - V	18	
6 a.	Explain the principle of operation of a 1- ϕ Induction Motor using double revolving	9	L2 CO5
	field theory.		L2 C05
b.	Write a note on;		
	i) Cogging and crawling in Induction Motor	9	L2 CO5
	ii) Split- phase Induction Motor		
c.	Draw the circle diagram of 15 kW, 50 Hz, 400 V, 4-pole, 3- ϕ , star-connected		
	Induction Motor with the following data:		
	No load test: 400 V, 9 A, 1310 W	9	L4 CO5
	Blocked rotor test: 200 V, 50 A, 7100 W		
	Determine line current and efficiency (choose the scale of $1 \text{ cm} = 6 \text{ A}$).		

* * * *