

Time: 3 hrs

P.E.S. College of Engineering, Mandya - 571 401

U.S.N

(An Autonomous Institution affiliated to VTU, Belagavi) Sixth Semester, B.E. - Electrical and Electronics Engineering Semester End Examination; August - 2023

Power System Analysis and Stability

Max. Marks: 100

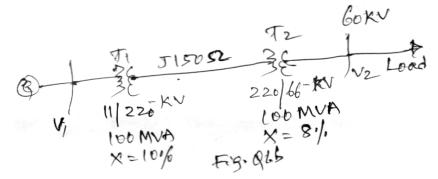
The Students will be able to:

CO1: Modelling of PS components viz., transformers, lines and generator to represent in single line diagram.

Course Outcomes

CO2: Analysis of a given power system using per-unit system.

CO3: Design and determine the performance of a power system.

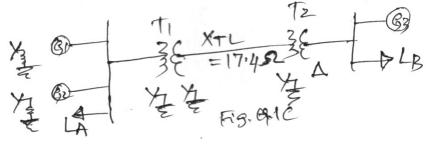

CO4: Analysis of short-circuit current face faults.

CO5: Utilizing symmetrical components to determine short-circuit currents, and phase voltages for unbalanced faults.

Note: I) **PART - A** is compulsory. **Two** marks for each question. **II**) **PART - B**: Anguag gay **Two** sub questions (from a, b, c)

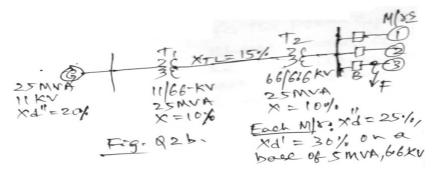
II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

Q. No.	Questions	Marks BLs COs POs	
	I : PART - A	10	
1 a.	Define per unit impedance of circuit element.	2	L1 CO1 PO2
b.	Give the short circuit current expression, when transient happens on a	2	L2 CO2 PO3
	transmission line and name the variables.	2	22 002103
с.	What are the symmetrical components? Explain.	2	L1 CO3 PO1
d.	Give the characteristics feature which distinguishes shunt type fault from	2	L2 CO4 PO2
	series type faults.	-	
e.	What is meant by stability of power system and name the types of	2	L1 CO5 PO1
	stabilities?	-	
	II : PART - B	90	
	UNIT - I	18	
2 a.	What are the single line diagrams? Explain the procedure for finding the	9	L1 CO1 PO1
	reactance diagram. List the assumption made.		
b.	Fig. Q 1(b) shows the schematic diagram of a radial transmission system.		
	The ratings and reactance of various components are shown there in. A		
	load of 60 MW at 0.9 pF lag is tapped from the 66 kV substation which is	9	L3 CO1 PO3
	to be maintained at 60 kV. Calculate the terminal voltage of the machine		LJ COTTOJ
	represent the transmission line and transformers by series reactance only.		
	Take HT side rating as bases.		



- c. For the single line diagram, Fig. Q 1(c) and component data given, obtain the Per unit reactance diagram. G₁:20,000 kVA, 6.6 kV, $X^{"} = 0.655 \Omega$
 - "
 - G₂: 10,000 kVA, 6.6 kV, $X^{"}$ = 1.31 Ω

 G_1 :30,000 kVA, 3.81 kV, $X^{"} = 0.1452 \Omega$


 $T_{1,}\ T2:$ Each Transformer in each 3- ϕ bank, 10,000 kVA, 38.1 kV,

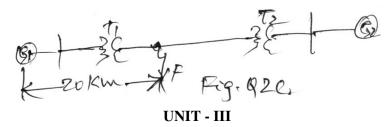
 $X = 14.52 \Omega$ referred to HT side of the transformer.

- 3 a. Explain clearly the variation of current and impedance of an alternator (unloaded) when a $3-\phi$ sudden short circuit occurs at its terminals.
 - b. For the power system network with the data given in Fig. Q 2(b), the bus voltage at the motors is 6.6 kV when a 3-φ fault occurs at a point F. For the specified fault calculate:
 - i) The sub transient current in the fault
 - ii) The sub transient current in the breaker B
 - iii) The momentary current in breaks B
 - iv) The current to be interrupted by breaker B in 5 cycles.
 - Given $X_{TL} = 15\%$ on a base of 25 MVA, 66 kV.

9 L3 CO1 PO3

18

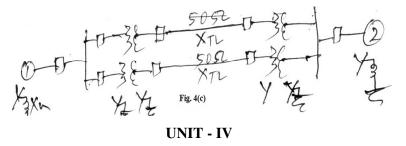
9


L3 CO2 PO3

9 L3 CO2 PO3

P18EE61

L3 CO2 PO3


c Generators G₁ and G₂are identical and rated 11 kV, 20 MVA and have a transient reactor of point 0.25 pu on its own MVA base. The Transformer T₁ and T₂ are also identical and are rated 11-66 kV, 5 MVA and have a reactance of 0.06 pu to their own base MVA. The tie line is 50 km long: each conductor has a reactance of 0.848 Ω /Km. The 3- ϕ fault is assumed at F, 20 Km from generator 1as shown in Fig. 2Q(c). Find the SC current I_{SC}.

- 4 a. Obtain the relationship between the systematical components and unbalanced 3-φ voltage and current phasor.
 - b. A balanced Δ -connected load is connected to a 3- ϕ systematical supply. The line currents are 10A each in magnitude. If the fuse is one of the line blows out. Determine the sequence components of line currents.
 - c. Draw the positive, negative and zero sequence network for the power system shown in Fig.4(c). Choose a base of 50 MVA, 220 kVin the 50 Ω transmission lines and mark all reactance's in pu.

The ratings are: Gen 1 and 2 = 25 MVA, 11 kV, X"=20% 3- ϕ transformers (each): 20 MVA, 11Y/220Y-kV, X = 15%, X_n = 5% of machine 1 and 2 ratings.

The negative sequence reactance of the each machine is equal to the sub transient reactance. The zero sequence reactance of each machine is 8%. Assume that the zero sequence reactance of lines are 250% of their positive sequence reactance.

5 a. A single line to ground fault occurs at the terminals of an unloaded generator. Derive an expression for the fault current. Draw the connection 9 of the sequence network.

18

9

9

L2 CO3 PO1, 2

L3 CO3 PO3

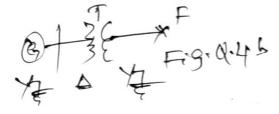
18

9

Canta 1

L2 CO4 PO2

L3 CO4 PO3


9

b. The following data may be assumed for the network shown in Fig. Q4(b).

 $G = 50 \text{ MVA}, 11 \text{ kV}, X_1 = 80\%, X_2 = 50\%, X_0 = 20\%$

T = 400 MVA, 11/110 kV, $X_1 = X_2 = X_0 = 6\%$.

The % reactance values are based on the capacity and voltage of each device. If a double line to ground fault occurs, find the current flowing in the conductor at F.

c. A 3- φ generator with open circuit voltage of 400 volts is subject to an LG fault through a fault impedance of J2 Ω. Determine the fault current if Z₁ = J4 Ω, Z₂ = J2 Ω, Z₀ = J1 Ω. Repeat the problem for LL and LLG fault.
9 L3 CO4 PO3 fault.

	UNIT - V	18	
6 a.	Discuss the methods of improving steady state and transient stability of a	9	L2 CO5 PO2
	power system.	,	12 003102
b.	Derive power angle equation of silent pole synchronous machine	9	L2 CO5 PO2
	connected to an infinite bus. Also, draw the power angle curve.		
c.	A 60 Hz, 4 pole turbo generator rated 500 MVA, 22 kV has an inertia		
	constant of $H = 7.5 \text{ MJ/MVA}$. Find;		
	i) KE stored in the rotor at synchronous speed.	9	L3 CO5 PO3
	ii) The angular acceleration if the electrical power developed is 400 MW		
	when the input minus rotational losses is 740 kHP.		

* * * *