U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Eighth Semester, B.E. - Electrical and Electronics Engineering Semester End Examination; July - 2023

Energy Auditing and Demand Side Management

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1: Analyze the Energy situation in the world and India, Energy consumption Energy Economic Analysis.
- CO2: Demonstrate Energy Auditing.
- CO3: Analyze Electrical Equipment and power factor correction.
- CO4: Demonstrate the Demand Side Management.
- CO5: Analyze the Load management.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

, N	Q. No. Questions Marks BLs COs PO					
Q. No.	Questions		BLS	COs	POs	
	I:PART-A	10				
1 a.	What is ABT?	2	L1	CO1	PO2	
b.	Define Energy Audit.	2	L1	CO2	PO1	
c.	Mention the disadvantages of low power factor.	2	L1	CO3	PO1	
d.	Define the term strategic energy conservation with respect to DSM.	2	L1	CO4	PO2	
e.	Mention the factors which influence customer acceptance of DSM.	2	L1	CO5	PO2	
	II : PART - B	90				
	UNIT - I	18				
2 a.	Explain the energy conservation techniques used to reduce	9	L2	CO1	DO2	
	energy cost.	9	L2	COI	PO2	
b.	Write a note on objectives of energy conservation Act 2001.	9	L2	CO1	PO6	
c.	How long will it take for a sum of money to double, when					
	accumulating at 5% interest?					
	i) On simple interest basis	9	L3	CO1	DO2	
	ii) If interest is compounded annually	9	L3	COI	PO2	
	iii) If interest is compounded quarterly					
	iv) If interest is compounded on true compound interest basis.					
	UNIT - II	18				
3 a.	Explain ten steps methodology for detailed energy auditing.	9	L3	CO2	PO2	
b.	What are energy management strategies? Explain them in brief.	9	L3	CO2	PO2	
c.	Explain energy audit instruments.	9	L2	CO2	PO5	

P18EE822			Page No 2		
	UNIT - III	18			
4 a.	Mention causes of low power factor. Also write the advantages of	9	L2	CO3 PO2,6	
	high power factor.	9	L2	CO3 FO2,0	
b.	Write a note on:				
	i) Synchronous condenser	9	L2	CO3 PO2,3	
	ii) Static capacitor				
c.	A single phase motor connected to 400 V, 50 Hz supply takes 31.7 A				
	at a p.f of 0.7 lagging .Calculate the capacitance required parallel with	9	L3	CO3 PO2,3	
	the motor to raise the p.f to 0.9 lagging.				
	UNIT - IV	18			
5 a.	Explain the benefits of DSM.	9	L2	CO4 PO2	
b.	With a flowchart, explain DSM planning and implementation.	9	L3	CO4 PO2	
c.	Discuss the various tariff options for DSM implementation. Mention	9	L3	CO4 PO2,6	
	the factors which influence customer acceptance of DSM.	J	L3	CO4 1 O2,0	
	UNIT - V	18			
6 a.	Explain peak clipping and valley filling with relevant diagrams.	9	L3	CO ₅ PO ₂	
b.	Explain energy conservation opportunities in:				
	i) Agricultural sector	9	L3	CO ₅ PO ₇	
	ii) Industrial sector				
c.	Explain plant level organization with relevant flowchart.	9	L2	CO ₅ PO ₃	