

Max. Marks: 100

The Students will be able to:

CO1: Understand about computer control centers to control power systems, timeline power flow, frequency deviation.

CO2: Design and develop different system models to Load-Frequency control, Single area control and two area control methods.

CO3: Understand the different methods of controlling voltage, Different methods inject reactive power and working of tap changing transformer in voltage control.

CO4: Understand the need of unit commitment and different constraints in unit commitment.

CO5: Study about power system security, different methods to get the solution of network problems

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

Q. No.	Questions	Marks	BLs	COs	POs
	I : PART - A	10			
1 a.	What is the function of tie line in interconnected power system?	2	L1	CO1	PO1
b.	What is the function of fly ball and speed changer in speed governor?	2	L1	CO2	PO1
c.	What are the different methods used to improve voltage at a bus?	2	L1	CO3	PO1
d.	What is the advantage of dynamic programming in unit commitment?	2	L1	CO4	PO1
e.	What are the factors that affect security of power system?	2	L1	CO5	PO1
	II : PART - B	90			
	UNIT - I	18			
2 a.	Derive an expression for tie line power flow and frequency	9	L3	CO1	PO1
	deviation for two area power system.	9	LS		
b.	Explain the parallel operation of generator;				
	(i) Two units with different speed settling	5+4	L2	CO1	PO1
	(ii) Two different generator operated in parallel				
c.	Two synchrnous generators are; (i) Initially supplying a common				
	load at 1 P.U frequency (50 Hz). The retry of unit 1 is 447 MW and				
	has 0.03 P.U droop built into its governor. Unit 2 is rated 400 MW	5+4	1.2	CO1	DO1 2
	and has 0.05 PU droop. Find each unit share of 0.10 P.U increase in	3+4	L3	COI	PO1,2
	the load demand. Also find the new line frequency.				
	(ii) Explain control feature available to the operator				

(ii) Explain control feature available to the operator.

P18EE823 Page No 2				
	UNIT - II	18		
3 a.	Drive the mathematical model of the speed governing system.	9	L3	CO2 PO1,2
b.	Obtain an expression for steady state change in system frequency for a step change in load demand, assure free governor operation.	9	L3	CO2 PO1,2
c.	With a schematic diagram, explain the alternator voltage regulator scheme.	9	L2	CO2 PO1
	UNIT - III	18		
4 a.	Explain in detail the components of power system that can generate and absorb reactive power.	9	L2	CO3 PO1
b.	Derive necessary equation to prove that voltage at load point			
	depends on reactive power consumed by load and real power	9	L3	CO3 PO1,2
	depends in delta (load angle).			
c.	Determine the power supplied by generator and the power factor at			
	which generator must operator for the circuit shown in Fig. 3 (c)			

Assume base MVA as 100 MVA.

9 L3 CO3 PO1,2

L2 CO4 PO1

18

5 a. Explain the priority list method of unit commitment with an example, write necessary flowchart. 9

UNIT - IV

- b. (i) Explain the different constraint involved in unit commitment
 - (ii) What is the difference between unit commitment and 6+3 L2 CO4 PO1 economic load dispatch?
- c. Construct a priority list for three units for the data given below:

Unit	Full load avg.	P_G^{min}	P _G ^{max}
	production cost	MW	MW
	Rs/MWH		
1	0.003124Pg ₁ +7.92	150	600
2	0.00213Pg ₂ +7.2	100	400
3	0.00142Pg ₃ +8.1	50	200

9 L3 CO4 PO1,2

P18EE823			age No 3		
	UNIT - V	18			
6 a.	With flowchart, explain AC power flow security analysis with contingency case selection.	9	L2	CO5	PO1
b.	 (i) Explain power transfer distribution factor and line outage distribution factor in contingency analysis. (ii) Mention the factors / steps considered in security of power contents and basis 	9	L3	CO5	PO1
c.	system analysis. Explain security constraint optimal power flow with an example.	9	L2	CO5	PO1

* * * *