	U.S.N				
4	P.E.S. College of Engineering, Mandya - 571 (An Autonomous Institution affiliated to VTU, Belagavi) Sixth Semester, B.E Industrial and Production Enginee Semester End Examination; August - 2023 Quality Assurance and Reliability				
Time	e: 3 hrs	Max.	Mark	cs: 10	0
CO3: CO4: CO5:	Demonstrate the concept of statistical process control and control charts for variables. Analyze the controls chart for fraction non-confirming (defective) development and chart. Analyze the various sampling inspection. Estimate the reliability and life testing.	d operat	tion oj	f contro	ol
	I) PART - A is compulsory. Two marks for each question. II) PART - B: Answer any Two sub questions (from a, b, c) for a Maximum of 18 marks	from ea	ich un	t	
	(I) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks	from ea Marks			POs
	(I) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks				POs
	(I) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks Questions	Marks			_
. No.	II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks Questions I : PART - A	Marks 10	BLs L1	COs	PO
. No. 1 a.	 (I) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks Questions I: PART - A Define quality from producer concept and as well as consumer concept. 	Marks 10 2	BLs L1	COs CO4	PO1 PO1
2. No. 1 a. b.	 (I) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks Questions I: PART - A Define quality from producer concept and as well as consumer concept. What happens when sample size increases to mean connect charts limit. 	Marks 10 2 2	BLs L1 L1	COs CO4 CO2	PO1 PO1 PO1
1 a. b. c.	 (I) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks Questions I: PART - A Define quality from producer concept and as well as consumer concept. What happens when sample size increases to mean connect charts limit. Differentiate between defect and defective. 	Marks 10 2 2 2	BLs L1 L1 L1	COs CO4 CO2 CO3	PO PO PO PO

c.	. Differentiate between series and paranel device configurations.		LI	COJ	101
	II : PART - B	90			
	UNIT - I	18			
2 a.	Explain briefly the dimensions of quality measured in manufacturing	9	L2	CO1	PO1
	industries.				
b.	Discuss the quality cost categories briefly.	9	L2	CO1	PO1
с.	Explain briefly the steps in structuring as audit program.	9	L2	CO1	PO1
	UNIT - II	18			
3 a.	With an example differentiate between choice and assignable causes of	10	1.2	CO2	
	variation and also show the control chart pattern of variation in both.	12	L2	02	POI
b.	A machine is working to a specification of 12.58 \pm 0.05 mm. A study of 50				

consecutive pieces shows the following measurement put in to 10 group of 5 each.

Sub group No	1	2	3	4	5	6	7	8	9	10
Dimension of	12.63	12.62	12.60	12.61	12.59	12.59	12.59	12.61	12.58	12.54
angh sampla	12.60	12.56	12.56	12.66	12.57	12.59	12.60	12.62	12.57	12.58
each sample	12.62	12.61	12.59	12.63	12.58	12.61	12.60	12.60	12.60	12.62
of 5	12.60	12.59	12.58	12.60	12.56	12.56	12.63	12.65	12.61	12.54
	12.65	12.60	12.63	12.61	12.59	12.57	12.57	12.60	12.60	12.56

12 L2 CO2 PO1

i) Determine the 3 σ limits for $\frac{1}{x}$ chart

- iii) Does it appear that the machine is capable of meeting the specification requirements? Assume normal distribution.
- c. Define process capability. With an example differentiate control limit and specification limit.

UNIT - III

4 a. In a manufacturing process the number of defective found in the inspection of

20 lots of 100 samples is given below.

Lot no.	No. of defectives	Lot No.	No. of defectives
1	5	11	7
2	4	12	6
3	3	13	3
4	5	14	5
5	4	15	4
6	6	16	2
7	9	17	8
8	15	18	7
9	11	19	6
10	6	20	4

12 L3 CO3 PO1

- i) Determine the control limit of p chart and state whether the process is in control
- ii) Determine the new value of mean fraction defective if some points are out of control. Compute the corresponding control limits and state whether the process is still in control or not
- iii)Determine the sample size when a quality limit not worse than 9% is desirable and a 10% bad product will not be permitted more than three times in thousand
- b. The following details collected from 100 meter pieces of woolen cloths.

Purchaser's	Number of	Purchaser's	Number of	
Inspection no	defects	Inspection no	defects	
1	14	13	12	
2	5	14	9	
3	10	15	3	
4	19	16	22	
5	0	17	7	
6	6	18	1	
7	2	19	1	
8	9	20	6	
9	8	21	4	
10	6	22	12	
11	7	23	5	
12	3	24	8	
		25	8	

12 L3 CO3 PO1

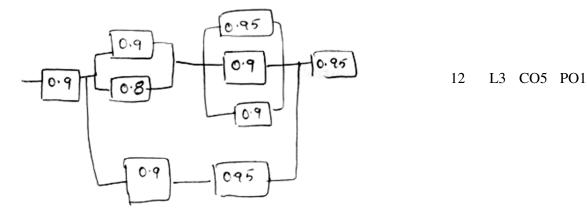
i) Compute the value of $\overline{C_c}$ and its control limit ii) Draw C chart

iii) Compute value of $\overline{C_c}$ for the future production, if you deem it necessary

Page No... 2

6 L2 CO2 PO1

18


P18IP63			Page No 3			
c.	. Compare control chart for attributes and control chart for variable in terms of		L2 CO3 PO1			
	its advantages and disadvantages.	6	12 005 101			
	UNIT - IV	18				
5 a.	Explain the OC course with reference to sampling inspection and the meaning	12	L2 CO4 PO1			
	of the terms AQL, LTPD, IQL, producer's risk and consumer's risk.	12	L2 C04 F01			
b.	Design a single sampling plan inspection plan by attributes which will meet					
	or nearly meet the following requirements:	12	L3 CO4 PO1			
	$\alpha = 0.05, \beta = 0.01, P_1 = 0.008 P_2 = 0.04$					
c.	The mobile phone company producers mobile phones in lots of 400 phones					
	each to check the quality of the lots, the quality inspector of the company					
	uses a double sampling plan with $n_1 = 15$; $c_1 = 1$; $n_2 = 30$ and $c_2 = 3$.	6	L3 CO4 PO1			
	What is the probability of accepting the lot on the first sample? What is the	0	L3 C04 F01			
	probability of first sample acceptance? The average incoming quality of the					
	lot as 0.05.Use Binomial distribution.					
_	UNIT - V	18				

6 a. A system consistence of three sub system A, B and C. The system is primarily used on a certain mission that last 8 hours. The information is given below.

Sub	Required operating	Type of	Reliability
system	time during mission	failure	Information
	in hours	distribution	
			500% of
А	8	Exponential	subsystem will
A		Exponential	last at least 14
			hours
			Any life is
В	3	Normal	6 hrs with S.D
			of 1.5 hours
С	Λ	Weibull with	Any life in 40hrs
Ľ	4	$\beta = 1.0$	Any me m 40ms

12 L3 CO5 PO1

b. Consider a mixed mode system comprise of serial and parallel components as shown in figure. Calculate overall reliability of system.

