

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi) Fourth Semester, B.E., - Information Science and Engineering Semester End Examination; August - 2023

Finite Automata and Formal Languages

Time: 3 hrs

Max. Marks: 100

Course Outcomes

CO1: Construct regular expression and finite automata CO2: Analyze regular Language CO3: Design context free grammars CO4: Design push down automata

CO5: Design Turing machine

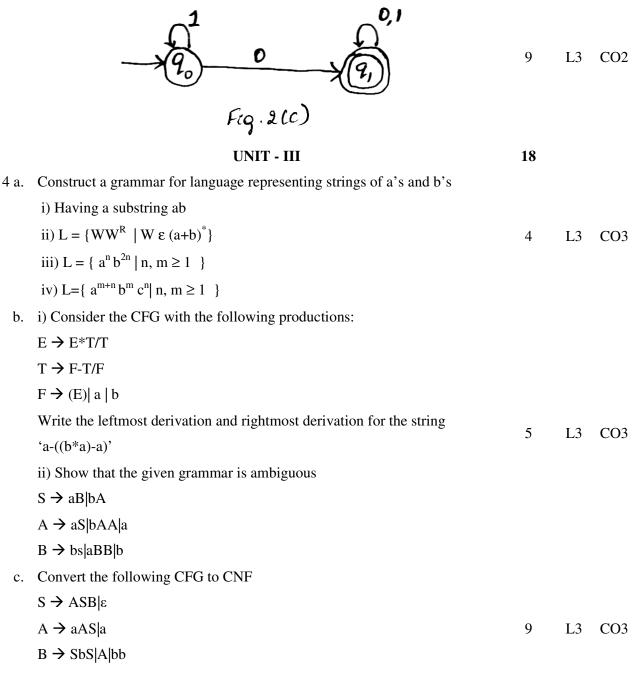
The Students will be able to:

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.


Q. No.	Questions	Marks	BLs	COs
	I : PART - A	10		
1 a.	Define regular expression.	2	L1	CO1
b.	Draw an NFA for the RE = $ab(a+b)^*$.	2	L3	CO2
c.	Write a grammar to generate the following language:	2	L3	CO3
	$L=\{a^n b^n \mid n \ge 1\}$			
d.	"Is these any need for pushdown automata when finite automata already	2	L2	CO4
	exists?" Justify with answer.			
e.	Define Turing machine.	2	L1	CO5
	II : PART - B	90		
	UNIT - I	18		
2 a.	Define the following with an example:	9	L1	CO1
	i) Alphabet ii) String iii) Kleen closure iv) Language	9	LI	COI
b.	Write a regular expression corresponding to each of the following subsets			
	of (a, b) [*]			
	i) The language of all strings in which the numbers of a's is odd	9	L3	CO1
	ii) The language of all strings that do not ends with ab			
	iii) The language of all strings whose second symbol from the right end is a			
	iv) L={ $a^n b^m n \ge 4, m \le 3$ }			
с.	Design the DFA for the following language over $\sum = \{a, b\}$			
	i) L = {a W a W ε (a, b) [*] }	9	L3	CO1
	ii) Ending with ab or ba			
	iii) Having even number of a's and odd numbers of b's			

Page No... 2


UNIT - II

18

3 a. Convert the following NFA show in Fig.2.a to its equivalent DFA.

- b. Prove that every R.E, There exists a FA which accepts the same language accepted by the R.E. 9 L2 CO2
- c. Obtain a R.E for the FA shown in Fig .2(c), using Kleen's theorem.

P18IS43			Page No 3		
	UNIT - IV	18			
5 a.	Construct a PDA to accept the language $L = \{WCW^R \mid W\epsilon(a+b)^*\}$ where W^R is reverse of W by a final state.	9	L3	CO4	
b.	Construct a PDA to accept a string of balanced parentheses. The				
	parentheses to be considered are $(,),[,]$.check whether the string $[()()(])]$ is accepted or rejected.	9	L3	CO4	
c.	Is the PDA to accept the language L= {W W $\varepsilon(a, b)^*$ and $n_a(W) > n_b(W)$ } is deterministic?	9	L3	CO4	
	UNIT - V	18			
6 a.	 i) Describe a Turing machine model. ii) Construct a TM to accept the language L= {ω ωε(0+1)*} containing the substring 001. 	4 5	L2 L3	CO5	
b.	Draw a T.M to accept the language L={ $0^n 1^n n \ge 1$ }.	9	L3	CO5	
c.	Explain how to combine more than one TM with an example.	9	L2	CO5	

* * * *