P18IS44					Ра	ge N	Io 1		
U.S.N									
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Fourth Semester, B.E Information Science and Engineering									
Semester End Examination; August - 2023									
Design and Analysis of Algor	ithms	5							

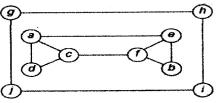
Time: 3 hrs

Course Outcomes

The Students will be able to: CO1: Use of asymptotic notations to analyze the performance of algorithms.

CO2: Analyze the design of algorithm using brute force, decrease and conquer.

CO3: Analyze the design of algorithm using divide and conquer, transfer and conquer.

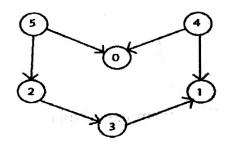

CO4: Analyze the decision of algorithm using space and time tradeoffs, dynamic programming.

CO5: Analyze the design of algorithm using greedy technique, backtracking, branch and bound techniques

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

Q. No.	Questions I : PART - A		Marks BLs COs POs		
1 a.	Write a Euclid's algorithm for computing GCD (m,n) .	10 2	L1 CO1 PO1		
b.	List out any two drawbacks of source removal algorithm used for topological	2			
	sorting with respect to time efficiency.		L1 CO2 PO1		
с.	Give the recurrence relation $T(n)$ for the binary search algorithm.	2	L1 CO3 PO1		
d.	State the purpose of dynamic programming.	2	L1 CO4 PO1		
e.	List any two applications of the greedy strategy.	2	L1 CO5 PO1		
	II : PART - B	90			
	UNIT - I	18			
2 a.	Define algorithm and also list its characteristics. Write an algorithm for Sieve	9	L2 CO1 PO1		
	of Eratosthenes.		22 001101		
b.	Explain various asymptotic notation used in analyzing an algorithm.	9	L2 CO1 PO1		
	Give examples.	9	L2 COIFOI		
c.	Design algorithm for determining whether all the elements in the given				
	collection are distinct or not and give the general plan for analyzing that	9	L3 CO1 PO1		
	algorithm. Analyze for its complexity.				
	UNIT - II	18			
3 a.	With an algorithm and suitable example, explain how the bubble sort algorithm works? Also show that the time complexity of this algorithm is quadratic.		L3 CO2 PO1		
			L3 C02 F01		
b.	Write an algorithm for the Breadth-First search (BFS) traversal of a given				
	graph. Apply the same on the graph shown below and also represent the tree				
	edges and cross adjust in the BFS tree.				
	(R)(R)	0			


9 L3 CO2 PO1

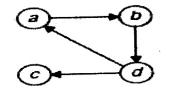
Max. Marks: 100

Contd...2

P18IS44

c. Design an algorithm for topological sorting using Depth-First Search (DFS) and apply the same on the graph shown below. Analyze for its complexity.

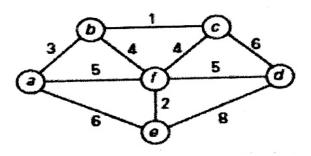
9 L3 CO2 PO1


18

UNIT -	III
--------	-----

4 a.	Explain the need of divide and conquer technique in brief. Write an algorithm	9	L2 CO3 PO1
	for merge sort. Mention the time complexity of merge sort.	9	L2 C03 F01
b.	State the purpose of AVL tree. Explain the four types of rotations used to		
	construct the AVL tree. Construct an AVL tree for the list 14, 17, 11, 7, 53, 4,	9	L3 CO3 PO1
	13, 12 by successive insertions.		
c.	Define heap tree. List out the properties of heap tree. Sort the list	9	L3 CO3 PO1
	2, 9, 7, 6, 5, 8 using heap sort.	9	LS COSPOI
	UNIT - IV	18	
5 a.	Write an algorithm to sort by distribution counting method and apply the same	0	L2 CO4 DO1
		9	L3 CO4 PO1

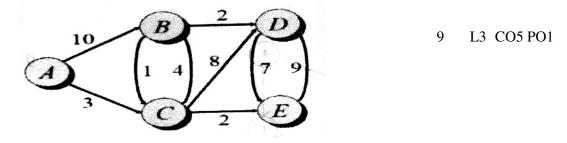
on 13, 11, 12, 13, 12, 12. Obtain it's time complexity.


b. Explain dynamic programming with Warshall's algorithm. Apply Warshall's algorithm for the digraph given below.

9 L3 CO4 PO1

c. Design an algorithm for knapsack problem using dynamic programming and solve the following instance of the knapsack problem, n = 4; weights (w₁, w₂, 9 L3 CO4 PO2 w₃, w₄) = (2, 1, 3, 2); Profits (p₁, p₂, p₃, p₄) = (12, 10, 20, 15); capacity W = 5.

6 a. Explain greedy technique with Kruskal's algorithm. Obtain minimum spanning tree for the graph given below using Kruskal's algorithm.



9 L3 CO5 PO1

Contd...3

P18IS44

b. Write Dijkstra's single source shortest path algorithm and apply the same on the given graph taking the source as *A*:

c. What is P, NP, NP-complete problem? Give examples. Explain backtracking,9 L2 CO5 PO1 with an example.

* * * *