


Time: 3 hrs	Max. Marks: 100								
Course Outcomes									
The Students will be able to:									

CO1 – Compare and contrast Microprocessor and Microcontroller.

CO2 - Code simple AVR assembly language instructions.

CO3 - Code assembly language to use the ports for input or output.

CO4 - Code c program for time delay, logical and arithmetic operations and fro data serialization.

CO5 - Interfacing the keypad to the AVR using assembly and C.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

Q. No.	Questions	Marks	BLs	COs	POs
	I : PART - A	10			
1 a.	List any four applications used by microcontroller.	2	L1	CO1	PO1
b.	What you meant by RCALL and ICALL?	2	L1	CO2	PO1
c.	Define Data Serialization.	2	L1	CO4	PO1
d.	Define indirect addressing mode.	2	L1	CO3	PO1
e.	List out the logical operations in AVR programming C.	2	L1	CO5	PO1
	II : PART - B	90			
	UNIT - I	18			
2 a.	Explain the simplified view of an AVR microcontroller.	9	L2	CO1	PO1
b.	Write the program to multiply two numbers in a given address 0x6A and 0x5C. After that store it in an address of SRAM address 0x7A.	9	L3	CO1,2	PO1
c.	Define Microcontroller. Compare microcontroller versus Microprocessor.	9	L2	CO1	PO1
	UNIT - II	18			
3 a.	With an example, explain how to calling many subroutines from the main program?	9	L2	CO2	PO1
b.	Write a program and flowchart for the following steps given below:				
	Step 1: Clear R20,				
	Step 2: Add 6 to R20,11 times,	9	L3	CO3	PO1
	Step 3: Send the sum to PORT C.				
	Use BRNE instruction.				
c.	Explain the other conditional branch instructions with example.	9	L2	CO2	PO1

P18IS46		Page No 2			
	UNIT - III	18			
4 a.	Explain Arithmetic instructions for unsigned numbers with an example.	9	L2	CO3	PO1
b.	Assume that R16 has the number 72. Show how we can use ROR to	9	13	CO2 3	
	divide R16 by 9.	7	LJ	CO2,3	rui
c.	Explain logic and compare instructions with an example.	9	L2	CO2,4	PO1
	UNIT - IV	18			
5 a.	Define addressing mode. List and Explain types of addressing modes in	9	L2	CO3	PO1
	AVR microcontroller.	7	L2	005	101
b.	Write assembly code to send \$55 to PORT B, which includes the	9	L3	CO4	PO1
	register name, I/O address and data memory address.	7	LJ	04	101
c.	Define macro along with an example. Explain how macro is used?	9	L2	CO2,4	PO1
	UNIT - V	18			
6 a.	Explain the three ways to create time delay in AVR C with an example.	9	L2	CO4,5	PO1
b.	Explain binary (hex) to Decimal and ASCII conversion in AVR C.	9	L2	CO5	PO1
c.	i) Write a AVR C program to toggle all bits of PORTB 50000 times.				
	ii) Write a AVR C program to get a byte of data from PORT C, if it is	9	L3	CO4,5	PO1
	less than 100, send it to PORT B; otherwise, send it to PORT D.				

* * * *