





The Students will be able to:

CO1: Understand types of Machine learning algorithms.

*CO2:* Implement various classification algorithms using Python and apply techniques for building a good data set. *CO3:* Implement dimensionality reduction techniques using Python and perform model evaluation.

CO4: Implement Linear Regression, k-means and artificial neural network methods using Python.

CO5: Understand fundamentals of Deep learning and Tensor flow.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.

| Q. No. | Questions                                                                | Marks | BLs | COs | POs |
|--------|--------------------------------------------------------------------------|-------|-----|-----|-----|
|        | I : PART - A                                                             | 10    |     |     |     |
| 1 a.   | Explain reinforcement learning with a block diagram.                     | 2     | L2  | CO1 | PO1 |
| b.     | List the main steps in training a machine learning algorithm.            | 2     | L2  | CO2 | PO1 |
| с.     | What is confusion matrix?                                                | 2     | L1  | CO3 | PO1 |
| d.     | Give mathematical notation of simple linear regression.                  | 2     | L2  | CO4 | PO1 |
| e.     | What are the different parts of MNIST data set?                          | 2     | L2  | CO5 | PO1 |
|        | II : PART - B                                                            | 90    |     |     |     |
|        | UNIT - I                                                                 | 18    |     |     |     |
| 2 a.   | What are the different types of machine learning?                        | 9     | L1  | CO1 | PO1 |
| b.     | Explain the roadmap for building machine learning systems.               | 9     | L1  | CO1 | PO2 |
| с.     | Write a python program to implement SVM classification (without built    | 9     | L3  | CO1 | PO2 |
|        | in function) to classify the data.                                       | 7     | LJ  | COI | 102 |
|        | UNIT - H                                                                 | 18    |     |     |     |
| 3 a.   | Explain the concept of perceptron.                                       | 9     | L1  | CO2 | PO1 |
| b.     | Write a python code for logistic regression by using wine dataset. Where |       |     |     |     |
|        | "x" comprises age and estimated salary and "y" comprises item            | 9     | L3  | CO2 | PO1 |
|        | purchased.                                                               |       |     |     |     |
| с.     | Write a python code snippets for the following:                          |       |     |     |     |
|        | i) Identifying missing values in tabular data                            | 9     | L3  | CO2 | PO1 |
|        | ii) Eliminating features with missing values                             |       |     |     |     |

| P18IS61 |                                                                                |    | Pa | Page No 2 |     |
|---------|--------------------------------------------------------------------------------|----|----|-----------|-----|
|         | UNIT - III                                                                     | 18 |    |           |     |
| 4 a.    | Summarize the steps behind the principle component analysis.                   | 9  | L2 | CO3       | PO2 |
| b.      | Write a python code using Latent Dirichlet Allocation class implemented        |    |    |           |     |
|         | in scikit-learn to decompose the movie review data set and categorize it       | 9  | L3 | CO3       | PO1 |
|         | into different topics.                                                         |    |    |           |     |
| c.      | Explain k-fold cross validation to assess model performance.                   | 9  | L2 | CO3       | PO1 |
|         | UNIT - IV                                                                      | 18 |    |           |     |
| 5 a.    | Explain simple linear regression and multiple linear regression.               | 9  | L2 | CO4       | PO2 |
| b.      | Write a python code to apply <i>k</i> -means algorithm to any sample data set. | 9  | L3 | CO4       | PO2 |
| c.      | Explain the process of forward propagation to calculate the output             | 9  | L2 | CO4       |     |
|         | of an MLP model.                                                               | 7  | LZ | 04        | roi |
|         | UNIT - V                                                                       | 18 |    |           |     |
| 6 a.    | Write equation for different activation function used in ANN.                  | 9  | L2 | CO5       | PO1 |
| b.      | Explain the following concepts:                                                |    |    |           |     |
|         | i) Tensor flow ranks and tensors                                               | 9  | L2 | CO5       | PO1 |
|         | ii) Placeholders in tensor flow                                                |    |    |           |     |
| c.      | Explain the different steps with code to restoring a trained model.            | 9  | L2 | CO5       | PO1 |
|         |                                                                                |    |    |           |     |

\* \* \* \*