U.S.N

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Eighth Semester, B.E - Information Science and Engineering Semester End Examination; July - 2023 Big Data

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1: Demonstrate the characteristics of big data using map reduce.
- CO2: Apply data modeling techniques to large data sets using HDFS.
- CO3: Develop application for big data analytics with the use of pig.
- CO4: Evaluate local and distributed modes using pig.
- CO5: Make use of hive data manipulation language for querying and analyzing data.

Note: I) **PART - A** is compulsory. **Two** marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

Q. No.	Questions	Marks	BLs	COs	POs
	I : PART - A	10			
1 a.	List any five applications of Big Data.	2	L1	CO1	PO1
b.	Define Pig. List the data types supported by Pig.	2	L1	CO3	PO1
c.	List the characteristics of HDFS.	2	L1	CO2	PO1
d.	Define YARN Schedulers.	2	L1	CO4	PO1
e.	Define HIVE DDL. List the commands used in DDL.	2	L1	CO5	PO1
	II : PART - B	90			
	UNIT - I	18			
2 a.	Explain shared-everything and shared-nothing architecture used in data processing.	9	L2	CO1	PO1
b.	Define Big Data. Explain Big Data processing cycle and Big Data processing flow.	9	L2	CO1	PO1
c.	Explain the four V's of Big Data with suitable example.	9	L2	CO1	PO1
	UNIT - II	18			
3 a.	Explain different ways of distributing data in databases.	9	L2	CO2	PO1
b.	Explain Google File Systems (GFS).	9	L2	CO2	PO1
c.	Define Hadoop. Explain the HDFS architecture in Hadoop.	9	L2	CO2	PO1
	UNIT - III	18			
4 a.	Explain the attributes of the Map phase and Reduce phase.	9	L2	CO2	PO1
b.	Explain the MapReduce data flow with a neat diagram.	9	L2	CO2	PO1
c.	Explain Hadoop MapReduce data processing scenario.	9	L2	CO2	PO1

P18IS81			Page No 2			
	UNIT - IV	18				
5 a.	What is logging? Explain the role it performs in testing Hadoop	9	1.2	CO2	DO1	
	applications.	9	L2	CO2	roi	
b.	Explain the backward compatibility with YARN.	9	L2	CO4	PO1	
c.	Explain the YARN architecture with neat diagram.	9	L2	CO4	PO1	
	UNIT - V	18				
6 a.	Explain HIVE architecture with neat diagram.	9	L2	CO5	PO1	
b.	List and explain any three different operators working with pig.	9	L2	CO3	PO1	
c.	Explain the data manipulation in HIVE.	9	L2	CO5	PO1	

* * * *