


The Students will be able to:

CO1:Explain the concept of air standard cycle and vapor power cycle

CO2: Explain and calculate the performance characteristics of reciprocating air compressor.

CO3: Explain the different types of refrigerating systems and Apply the knowledge of P-H chart

CO4:Calculate the performance characteristics of I.C. Engines

Note: I) PART-A is compulsory. Two marks for each question.

II) PART-B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

Q. No.	Questions	Marks	BLs	COs	POs
1 a.	I : PART - A List the assumptions for the analysis of air standard cycles.	10 2	L1	CO1	PO1
b.	Outline the practical limitations of Carnot vapour cycle.	2	L1	CO1	
		2	L1	CO1	
с.	Define Free air delivery.				
d.	Define the unit of refrigeration.	2	L1	CO3	
e.	Outline motoring test.	2	L1	CO4	PO1
	II : PART - B	90			
2	UNIT - I	18			
2 a.	Derive an expression for the air standard efficiency of Otto cycle in	9	L2	CO1	PO1
	terms of compression ratio with neat P-v and T-s representation.				
b.	In an air-standard Diesel engine cycle with a compression ratio of 14, the				
	condition of air at the start of the compression stroke are 1 bar and				
	300 K. After addition of heat at constant pressure, the temperature rises	9	L3	CO1	PO2
	to 2775 K. Determine the thermal efficiency of the cycle, net work done				
	per kg of air and the mean effective pressure.				
c.	Determine the required air-fuel ratio in a gas turbine plant, whose				
	turbine and compressor efficiencies are 85 and 80%, respectively. The				
	pressure ratio and maximum temperature of the cycle are 4 and $875^\circ\!\mathrm{C}$			CO1	PO2
	respectively. The working fluid can be taken as air (C _p = 1.0 kJ/kg K,	0	12		
	γ = 1.4), which enters the compressor at 1 bar and 27°C. The fuel used	9	L3		
	has calorific value of 42000 kJ/kg. There is loss of 10% of calorific value				
	in combustion chamber. Also determine the actual turbine exit				
	temperature.				

P18ME42			Page No 2		
UNIT - II		18			
3 a.	With the help of T-s diagram, explain the working of reheat Rankine	0		0.01	D O1
	cycle. Also deduce the expression of thermal efficiency for the same.	9	L2	CO1	POI
b.	Steam at 20 bar, 360°C is expanded in a steam turbine to 0.08 bar. It then				
	enters a condenser, where it is condensed to saturated liquid water. The				
	pump feeds back the water into the boiler. If the turbine and the pump	9	L3	CO1	PO2
	efficiencies are 0.95 and 0.8 respectively, find network and cycle				
	efficiency.				
c.	A regenerative steam cycle operates with the steam entering the turbine				
	at 30 bar and 500°C and is exhausted at 0.1 bar. A feed water heater				
	(open type) is used operates at 5 bar. Calculate;	9	L3	CO1	PO2
	(i) The thermal efficiency				
	(ii) Steam rate of the cycle				
	UNIT - III	18			
4 a.	With neat sketch, explain the working of single stage single acting				
	reciprocating air compressor. Also, mention the limitations of single	9	L2	CO2	PO1
	stage compression compared to multistage compression.				
b.	A single-stage, double-acting reciprocating air compressor works				
	between 1 bar and 10 bar. The compression follows the law				
	$pV^{1.35}$ = constant. The piston speed is 200 m/min and the compressor				
	speed is 120 rpm. The compressor consumes an indicated power of	9	L3	CO2	PO2
	62.5 kW with volumetric efficiency of 90%. Calculate;				
	(i) Diameter and stroke of the cylinder				
	(ii) Clearance volume as percentage of stroke volume				
c.	A two-stage, single-acting, reciprocating air compressor takes in air at				
	1 bar and 300 K. Air is discharged at 10 bar. The intermediate pressure is				
	ideal for minimum work and perfect intercooling. The law of				
	compression is $pV^{1.3}$ = constant. The rate of discharge is 0.1 kg/s.	9	1.2	CO 2	DO1
	Calculate;	9	L3	CO2	PO2
	(i) Power required to drive the compressor				
	(ii) Isothermal efficiency				
	(iii) Heat transferred in intercooler				
	UNIT - IV	18			
5 a.	Depict vapour compression refrigeration cycle in P-h and T-s				
	coordinates. Also, explain the function of each component in a simple	9	L2	CO3	PO1
	vapour compression refrigeration system.				
	Contd 3				

P18ME42			Pa	Page No 3		
b.	With neat sketch, explain the working of steam jet refrigeration system.	9	L2	CO3	PO1	
c.	A refrigerator used R-12 as a working fluid and it operates on an ideal					
	vapour compression cycle. The temperature of refrigerant in the					
	evaporator is -20° C and in the condenser is 40°C. The refrigerant is	9	L3	CO3	PO2	
	circulated at the rate of 0.03 kg/s. Determine the coefficient of					
	performance and capacity of refrigeration plant in the TR.					
	UNIT - V	18				
6 a.	With neat sketch, explain air box method to determine air consumption	9	L2	CO4	PO1	
1	in an engine.					
b.	In a test of a single-cylinder, four stroke Diesel engine, the following data were recorded:					
	Indicated mean effective pressure = 755 kPa, cylinder diameter = 10 cm,					
	piston stroke = 15 cm, engine speed = 480 rpm, brake wheel					
	diameter = 62.5 cm, net load on the brake wheel = 170 N	9	L3	CO4	PO2	
	Calculate;					
	(i) Indicated power					
	(ii) Brake power					
	(iii) The mechanical efficiency of the engine					
c.	A test on single cylinder, 4-stroke Diesel engine, having bore 180 mm					
	and stroke 360 mm gave the following results: speed 290 RPM, brake					
	torque 392 Nm, indicated mean-effective-pressure 7.2 bar, fuel					
	consumption 3.5 kg/h, cooling water flow 270 kg/h, cooling water					
	temperature rise 36°C, air-fuel ratio is 25, exhaust gas temperature					
	415°C, barometric pressure, 1.013 bar, room temperature 21°C. The fuel	9	L3	CO4	PO2	
	has calorific value of 45,200 kJ/kg. Calculate;					
	(i) The indicated thermal efficiency					
	(ii) The volumetric efficiency based on atmospheric conditions.					
	Draw up a heat balance sheet in terms of kJ/min.					
	$R = 0.287 \text{ kJ/kg}^{\circ}\text{K}$, C_p for dry exhaust gases = 1.0035 kJ/kg-K.					

* * * *