


The Students will be able to:

- CO1: Identify various mechanisms, determine their degrees of freedom; describe various inversions of four bar chain, single and double slider crank chain.
- CO2: Analyze velocity of four bar and slider-crank mechanisms by relative velocity method and Instantaneous centre method. Analyze acceleration of four bar and slider-crank mechanisms by relative acceleration method.
- CO3: Classify different types of gears; Explain Spur Gear terminology, law of gearing, interference and Back lash. Derive expressions for Path of contact, arc of contact and contact ratio. Solve numerical problems related to gears.
- CO4: Describe Simple, Compound and Epicyclic gear trains; Determine velocity ratio, tooth load and torque in epicyclic gear trains. Explain and calculate ratio of belt tensions; Estimate power transmitted by belt drive; Analyze effect of slip, initial and centrifugal belt tension on performance of belt drive.
- CO5: Explain cam and follower types; Explain different follower Motions; Construct cam profiles for different types of follower motions.

<u>Note</u>: I) PART - A is compulsory. Two marks for each question.
II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

Q. No.	Questions I : PART - A	Marks 10	BLs	COs	POs
1 a.	Define link and kinematic pair.	2	L1	CO1	PO1
b.	Define absolute and relative motions.	2	L1	CO2	PO1
с.	Define addendum circle and dedendum circle.	2	L1	CO3	PO1
d.	List out the classification of gear train.	2	L1	CO4	PO1
e.	List out the types of Follower-motion.	2	L1	CO5	PO1
	II : PART - B	90			
	UNIT - I	18			

2 a. For the kinematic linkages shown in Figure 2 (a) and (b), calculate the

following;

i) Number of binary links ii) Number of ternary links

iii) Degrees of freedom

9 L3 CO1 PO1,2

Contd...2

P18ME45			Page No 2
b.	Explain the inversions of four-bar mechanism.	9	L2 CO1 PO2, 3
c.	Explain the following mechanisms;	0	
	i) Ratchet and Pawl mechanism ii) Toggle mechanism	9	L2 CO1 PO2
	UNIT - II	18	
3 a.	Explain linear velocity and angular velocity of a link hinged at one end and free at another end.	4	L2 CO2 PO1,2
b.	In a four-link mechanism, the dimensions of the links are as follows;		
	AB = 50 mm, BC = 66 mm, CD = 56 mm and AD = 100 mm, AD is		
	fixed link. At the instant when $DAB = 60^{\circ}$, the link AB has an angular velocity of 10.5 rad/s in the counter-clockwise direction. Determine the;		
	i) Velocity of the point C		
	ii) Velocity of the point E on the link BC when BE = 40 mmiii) Angular velocities of the links BC and CD	14	L3 CO2 PO2,3
	iv) Velocity of an offset point 'F' on the link BC, if $BF = 45$ mm,		
	CF = 30 mm and BCF is read clockwise		
	v) Velocity of an offset point 'G' on the link CD, if $CG = 24$ mm,		
	DG = 44 mm and DCG is read clockwise		
с.	For the configuration of a slider-crank mechanism shown in Figure 3 (c),		
	calculate the;		
	i) Acceleration of the slider at B		
	ii) Acceleration of the point E		
	iii) Angular acceleration of the link AB, OA rotates at 20 rad/s counter-		
	clockwise	14	L3 CO2 PO2,3
	E450 A	17	15 002 102,5
	480 60 0 60 (mm) G		
	Figure 3 (c)		
	UNIT - III	18	
4 a.	Draw the schematic diagram of gear tooth; represent the following terms		
	in the diagram and explain each of them;	9	L2 CO3 PO2
	i) Addendum ii) Dedendum iii) Circular pitch	-	
	iv) Face width v) Clearance		

b. Derive an expression for path of contact.

9

L2 CO3 PO2,3

P18ME45			Pa	ge No 3
c.	Two involute gears in a mesh have a module of 8 mm and a pressure angle of 20° . The larger gear has 57 while the pinion has 23 teeth. If the			
	addenda on pinion and gear wheels are equal to one module, find the			
	i) Contact ratio (the number of pairs of teeth in contact)	9	L3	CO3 PO3
	ii) Angle of action of the pinion and the gear wheels			
	iii) Ratio of the sliding to rolling velocity at the beginning of contact and			
	at the end of contact			
	UNIT - IV	18		
5 a.	Explain briefly the following gear trains with neat sketch;			
	i) Compound gear-train	9	L2	CO4 PO2
	ii) Reverted gear train			
b.	An epicyclic gear train is shown in Figure 5 (b). The number of teeth on			
	A and B are 80 and 200. Determine the speed of the arm 'a';			
	i) if A rotates at 100 rpm clockwise and B at 50 rpm counter-clockwise			
	ii) if A rotates at 100 rpm clockwise and B is stationary			
		9	L3	CO4 PO2,3
	Figure 5 (b)			
c.	Explain the following with neat sketch;			
	i) Open belt-drive	9	12	CO4 PO2
	ii) Crossed belt-drive	,		01 102
	iii) V belt-drive			
	UNIT - V	18		
6 a.	Draw the profile of a cam operating a knife-edge follower having a lift of			
	30 mm. The cam raises the follower with SHM for 150° of the rotation			
	followed by a period of dwell for 60°. The follower descends for the next			
	100° rotation of the cam with uniform velocity, again followed by a	18	L3	CO5 PO2,3
	dwell period. The cam rotates at a uniform velocity of 120 rpm			
	clockwise and has a least radius of 20 mm. What will be the maximum			
	velocity and acceleration of the follower during the lift and the return?			
	Contd 4			

Contd...4

P18ME45

b. A flat-faced mushroom follower is operated by a uniformly rotating cam. The follower is raised through a distance of 25 mm in 120° rotation of the cam, remains at rest for the next 30° and is lowered during further 120° rotation of the cam. The raising of the follower takes place with cycloidal motion and the lowering with uniform acceleration and deceleration. However, the uniform acceleration is 2/3 of the uniform 18 deceleration. The least radius of the cam is 25 mm which rotates at 300 rpm clockwise. Draw the cam profile and determine the values of;

L3 CO5 PO2,3

- i) The maximum velocity and maximum acceleration during rising
- ii) Maximum velocity and maximum acceleration and deceleration during lowering of the follower

* * * *