
PI8M	102	1	Page No I		
	U.S.N				
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Sixth Semester, B.E Mechanical Engineering Semester End Examination; August - 2023					
Time: 3 hrs Max. Marks: 100					
Course Outcomes					
<i>The Students will be able to:</i> CO1: Understand the basic concepts and mathematical preliminaries of FEM required to solve basic field problems.					
 CO2: Develop interpolation models for 1D and 2D elements that satisfy convergence criteria and geometrical isotropy and used isoparametric concept in the finite element analysis. CO3: Formulate element stiffness Matrices and load vectors for different elements using variational principle and analyze axially loaded bars. 					
 CO4: Use finite element formulation in the determination of stresses, strains and reaction of trusses and transversely loaded beams. CO5: Formulate finite element equation for heat transfer problems using variational and Galerkin techniques and 					
	apply these models to analyze conduction and convection heat transfer problems		contiques and		
<u>Note</u> : I) PART - A is compulsory. Two marks for each question. II) PART - B: Answer any TWO sub questions (from a, b, c) for Maximum of 18 marks from each unit.					
Q. No.	Questions	Marks	s BLs COs POs		
	I : PART - A	10			
1 a.	During discretization mention the place where it is necessary to place the node.	2	L1 CO1 PO1		
b.	State the reason for using polynomial type of interpolation function in FEM.	2	L1 CO2 PO1		
c.	How do you calculate the size of the Global stiffness matrix?	2	L1 CO3 PO1		
d.	State the assumption made for Truss analysis.	2	L1 CO4 PO1		
e.	Write down the governing equation for one dimensional steady state heat				
	conduction with convention at the end and subjected to internal heat generation.	2	L1 CO5 PO1		
	II : PART - B	90			
	UNIT - I	18			
2 a.	Explain the discretization process of a given domain based on number of elements and size of the elements.	9	L1 CO1 PO1		
b.	Evaluate the integral using Gauss quadrature three point formula $I = \int_0^1 \frac{dx}{(1+x)}$	9	L1 CO2 PO2		
c.	and compare with exact value. Solve the following system of simultaneous equation by Gauss elimination method.				
	2x + 4y + 2z = 15 $2x + y + 2z = 5$	9	L1 CO3 PO3		

Page No... 1

4x + v - 2z = 0

P18ME62			Page No 2
	UNIT - II	18	
3 a.	For one dimensional two noded bar element, write the shape functions and their variation along the length of the element. What are its characteristics?	9	L2 CO1 PO1
b.	Show that interpolation function for linear triangular elements is given by $N_i = \frac{1}{2}A_e(a_i + b_{ix} + c_{iy}) \text{ where } i = 1, 2, 3$	9	L2 CO2 PO2
0	2		
с.	Nodal coordinates for triangular elements are (1, 2), (5, 3), and (4, 6). The pressure at nodal points are 30 bar, 40 bar and 50 bar. Determine the pressure	9	L2 CO2 PO2
	at interior point P whose coordinates are (3.3, 3.3), also determine Jacobian		
	matrix for the element.	10	
	UNIT - III	18	
4 a.	Compute the consistent load vector in quadratic bar element due to body force.	9	L2 CO3 PO2
b.	Compute the strain displacement matrix (B matrix) for linear triangular element with nodal coordinates (1, 2), (5, 3) and (4, 6).	9	L3 CO3 PO2
с.	A bar having uniform cross section area of 250 mm ² and is subjected to load		
	of $P = 60$ kN as shown in Fig.Q3 (c). Determine the displacement and	9	L2 CO3 PO3
	support reaction forces of a bar. Take $E = 2 \times 10^4 \text{ N/mm}^2$.		
	UNIT - IV	18	
5 a.	List the assumption made in the finite element analysis of a truss structure.	4	L1 CO4 PO1
b.	For the two bar truss as shown in Fig.Q4 (b). Take $E = 200$ kN/mm ² and		
	A = 70.71 mm ² for each element, A force of P = 100 kN is applied at node 2.		
	Determine;	14	L3 CO4 PO3
	(i) Global stiffness Matrix and global force vector		
	(ii) Displacement of the point where load is applied		
c.	For the beam shown Fig.Q4 (c), determine the deflection at mid-span of		
	second element by taking the modulus of elasticity of material as 200 GPa and moment of inertia as $4 \times 10^6 \text{ m}^4$.	14	L3 CO4 PO3
	UNIT - V	18	
6 a.	Derive element Conductivity Matrix for a 1D heat conduction problem.	6	L2 CO5 PO1
ь.	A furnace wall consists of two materials, as shown in Fig.Q5 (b). The	0	22 003 101
0.	furnace temperature is 1500°c and the outside air temperature is 20°c with a convection coefficient of $h_i = 12 \text{ W/m}^2$.K and $h_o = 2 \text{ W/m}^2$.K. Find the	12	L2 CO5 PO3
	temperature along the composite wall. Take $k_1 = 1.2 \text{ W/mK}$, $k_2 = 0.2 \text{ W/mK}$.		
с.	Calculate the temperature distribution of one dimensional fin with the		
	physical properties given below in Fig.Q5 (c). Assume that the convection	12	L3 CO5 PO3
	heat loss occurs from the end of the fin. Model the fin by four elements.	. –	
	or and the the of the fine fille fill of four or fillents.		

