U.S.N							
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Eighth Semester, B.E Mechanical Engineering Semester End Examination; July - 2023 Industrial Robotics							
Time: 3 hrs	Max. Marks: 100						
Course Outcomes							
The Students will be able to:							
CO1: Classify the robots based on geometrical configuration. Define work volume, resolution and accuracy of various configuration of robot.							

Page No... 1

CO2: Identify different types of drive system and sensor required for specific applications.

CO3: Explain the forward Kinematics of robots using DH method.

CO4: Develop robot task program using robot language.

CO5: Distinguish the requirements of robot systems for various industrial applications.

<u>Note</u>: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.

Q. No.	Questions	Marks BLs COs PO			POs
	I : PART - A	10			
1 a.	Define Robot work volume.	2	L1	CO1	PO1
b.	Name the different drive systems powered by industrial robots.	2	L1	CO2	PO1
c.	Write a rotational matrix about <i>x</i> -axis for direct kinematic robotics.	2	L1	CO3	PO1
d.	List the methods of robot programming.	2	L1	CO4	PO1
e.	Define forging operation.	2	L1	CO5	PO1
	II : PART - B	90			
	UNIT - I	18			
2 a.	With a neat sketch, explain any three robot configurations.	9	L1	CO1	PO1
b.	Sketch and explain the following grippers used in robots:				
	i) Mechanical gripper	9	1.2	$CO1^{-1}$	PO1,2
	ii) Vaccum cups	,		001	101,2
	iii) Magnetic gripper				
c.	With a neat diagram, explain accuracy, resolution and repeatability.	9	L2	CO1	PO1,2
	UNIT - II	18			
3 a.	With a neat circuit diagram, explain hydraulic drive system used in	9	L3	CO^{2}	PO1,2
	industrial robots.		10	002	- 0 1,2
b.	With a neat diagram, explain principle and working of torque-force sensor	9	L3	CO2	PO2
	used in robotics.	,	L 5	002	102
c.	Explain principle and working of encoders.	9	L3	CO2	PO2

P18ME81		I	Page No 2
UNIT - III		18	
4 a.	With a neat sketch, explain the steps involved in implementation of Denavit-Hartenberg convention.	9	L2 CO3 PO1,2
b.	With the help of block diagram, explain the direct kinematics problem in robotics.	9	L2 CO3 PO2
c.	A point $P_{abc} = (2, 3, 4)^{T}$ has to be translated through distance of +4 units		
	along OX-axis and -2 units along OZ-axis. Determine the coordinates of	9	L2 CO3 PO2
	the new point P_{xyz} by homogeneous transformation.		
	UNIT - IV	18	
5 a.	Discuss first generation and future generation languages of robot programming.	9	L3 CO4 PO2
b.	With a neat sketch, explain teach pendant method of robot teaching.	9	L3 CO4 PO2
c.	Write a VAL program for the palletizing operations, the robot must pick up		
	parts from an incoming chute and deposit them into a pallet. The pallet has		
	three rows that are 40 mm apart and five columns that are 30 mm apart. The	9	L3 CO4 PO1,2
	plane of the pallet is assumed to be parallel to the <i>xy</i> plane, the rows of the	9	L3 C04 F01,2
	pallet are parallel to the axis and the columns of the pallets are parallel to		
	the y-axis.		
	UNIT - V	18	
6 a.	List and explain key issues for locomotion.	9	L4 CO5 PO1
b.	Calculate and explain the number of possible gaits for a biped walker in	9	L4 CO5 PO1,2
	autonomous mobile robots.	,	L+ C05101,2
c.	Explain how robots being utilized in the following production operations?		
	i) Die casting	9	L4 CO5 PO1,2
	ii) Plastic moulding	,	21 003101,2
	iii) Stamping press operations		

* * * *