U.S.N ______ P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Eighth Semester, B.E. - Mechanical Engineering Semester End Examination; July - 2023 Operations Research Time: 3 hrs Max. Marks: 100

Page No... 1

The Students will be able to:

CO1: Identify and develop operation research models from the verbal description of real life.

CO2: Analyse the problem using mathematical tools and simple queue system.

CO3: Describe the model and the solving technique to analyse the results and propose recommendation.

CO4: Solve Transportation and Assignment problem using different methods.

CO5: Explain the game theory with their characteristics and Solve problems.

<u>Note</u>: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

Course Outcomes

Q. No.	Questions	Marks	BLs	COs	POs
	I : PART - A	10			
I a.	Write general formulation of Linear Programming Problem (LPP).	2	L1	CO1	PO1
b.	Define degeneracy in LPP.	2	L1	CO2	PO1
c.	Mention the different methods to find basic feasible solution in transportation problems.	2	L1	CO3	PO1
d.	What is project controlling?	2	L1	CO4	PO1
e.	What are the classifications of game theory problems?	2	L1	CO5	PO1
	II : PART - B	90			
	UNIT - I	18			
1 a. b.	A manufacture of packing material produced two types of packing tins round and flat. Major production facilities involved are cutting and joining. The cutting department can process 300tins of round or 500tins of flat per hour. If the profit contribution of round tins is Rs 100 per tin and that of flat is Rs 80 per tin, formulate the problem as LPP. Solve the following LPP by Graphical method. find the minimum value of ,	9	L2	CO1	PO2
	$Z = -X_1 - 2X_2$ Subjected to $-X_1 - 3X_2 \le 10$ $X_1 + X_2 \le 6$ $X_1 - X_2 \le 2$ $X_1, X_2 \ge 0$	9	L3	C01	PO2
с.	Explain the scope of OR.	9	L2	CO1	PO2

P18MI	E 821		Page No 2		
	UNIT - II	18			
2 a.	Solve by simplex method, minimize				
	$Z = X_1 - 3X_2 - 3X_3$				
	Subjected to,				
	$3X_1 - X_2 + 2X_3 \le 7$	14	L3 CO2 PO2		
	$2X_1 + 4X_2 \ge -12$				
	$-4X_1+3X_2+8X_3 \le 10$				
	$X_1, X_2, X_3 \ge 0$				
b.	Solve the following LPP by using two phase simplex method				
	Minimize $Z = X_1 + X_2$				
	Subjected to	14			
	$2X_1+X_2 \ge 4$	14	L3 CO2 PO2		
	$X_1 + 7X_2 \ge 7$				
	$X_1, X_2 \ge 0$				
c.	State the comparison between Big-M method and two phase method.	4	L4 CO2 PO2		
	UNIT - III	18			
3 a.	A find the optimum solution to the following transportation problem in				
	which the cell contains the transportation, transportation cost in rupees.				
	Supply	12	L1 CO3 PO2		
	21 16 25 13 11 17 18 14 23 13				
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	Demand 6 10 12 15				
b.	A sales man wants to visit cities 1, 2, 3 and 4. He does not want to visit				
	any city twice before completing the tour of all cities and wishes to				
	return starting station. Cost of going from one city to another in rupees is				
	gives in the table. Find the least cost route.	12	L1 CO3 PO2		
	To city 1 2 3 4	12	21 005 102		
	$1 \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
	From City 2 40 0 140 30				
	3 40 50 0 20 4 70 80 130 0				
c.	Discuss the concepts of degeneracy in transportation problem.	6	L2 CO3 PO2		

18

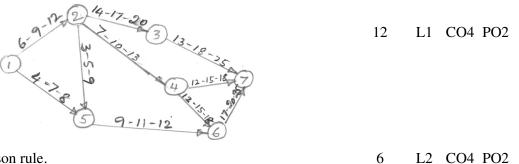
18

6

4 a.	A project	schedule	has the	following	characteristics
------	-----------	----------	---------	-----------	-----------------

Activity	Time	Activity	Time		
	(weeks)		(weeks)		
1-2	4	5-6	4		
1-3	1	5-7	8		
2-4	1	6-8	1		
3-4	1	7-8	2		
3-5	6	8-10	5		
4-9	5	9-10	7		

UNIT - IV


12 L1 CO4 PO2

i) Construct Network diagram

ii) Compute E and L for each event

iii) Find the critical path and project duration.

b. Consider the network shown in below figure for each activity the three time estimates t_o, t_m, t_p are given along the arrows in the t_o,- t_m, -t_p order. Find various and expected time for each activity.

c. Explain Falkerson r	rule.
------------------------	-------

UNIT - V

- 5 a. What are the characteristics of games?
 - b. Solve the following 2×4 game be graphical method.

		Pla	ayeı	r B						
		1	2	3	4			12	L3	\$ CO5 PO2
Player A	1	3	3	4	0					
	2	5	4	3	7					
1 .		1.		. •.						

- c. A self service store employee is cashier at its counter nine customers arrive on an average every 5 minutes while the cashier can serve 10 customers in 5 minutes. Assuming Poisson distribution for arrival rate and exponential for service time. Find;
- 6 L1 CO5 PO2

L1 CO5 PO2

- i) Average number of customers in the system.
- ii)Average queue length
- iii) Average time a customer spend in the system
- iv) Average time a customer's waits before being served