Max.	Marks:	100
------	--------	-----

Page No... 1

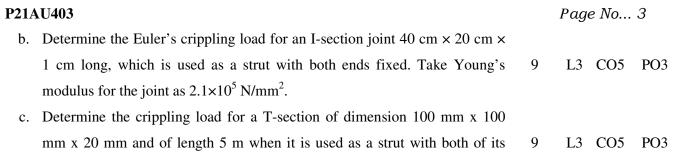
The Students will be able to:

CO1: Apply the concepts of normal stresses, strain, shear stress, bending stress torsional stress and buckling stress in mechanical components.

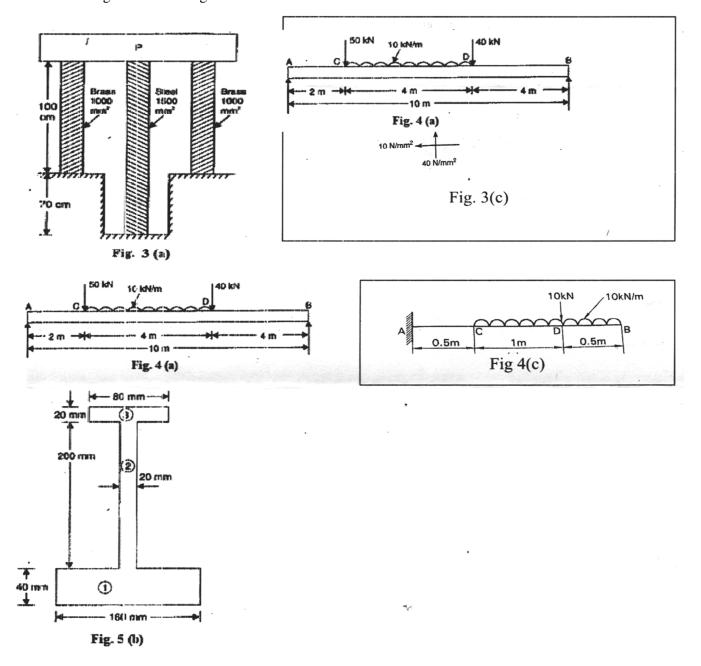
Course Outcomes

CO2: Apply the fundamentals of thermal stress and compound stresses in bars of uniform and compound section. CO3: Analyse the uniform, stepped, compound bars, beams for different cross section and columns.

CO4: Analyse the beams for deflection using Macaulay's method.


Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any Two sub questions (from a, b, c) for a Maximum of 18 marks from each unit.


Q. No.	Questions	Marks	BLs	COs	POs
	I : PART - A	10			
1 a.	Draw stress-strain curve for tension test on mild steel.	2	L1	CO4	PO1
b.	Discuss the elastic constants.	2	L1	CO2	PO1
с.	Define point of Contraflexure.	2	L1	CO3	PO1
d.	Write the assumptions made in the theory of simple bending.	2	L1	CO4	PO1
e.	Mention how the failure of column takes place.	2	L1	CO5	PO1
	II : PART - B	90			
	UNIT - I	18			
2 a.	Derive an expression for change in length of uniformly tapering circular rod.	6	L2	CO1	PO2
b.	A tensile load of 40 kN is acting on a rod diameter 40 mm and of length 4 m. A bore of diameter 20 mm is made centrally on the rod. To what length the rod should be bored so that total extension will increase 30% under the same tensile load. Take $E = 2 \times 10^5$ N/mm ² .	12	L3	CO1	PO3
c.	A bar of 30 mm diameter is subjected to a pull of 60 kN. The measured extension on gauge length of 200 mm is 0.1 mm and change in diameter is 0.004 mm. Compute Young's modulus, Poisson's ratio and Bulk modulus.	12	L3	CO1	PO3
	UNIT - II	18			
3 a.	Two brass rods and one steel rod together support a load as shown in Fig. 3(a). If the stresses in brass and steel are not to exceed 60 N/mm ² and 120 N/mm ² , find the safe load that can be supported. Take E for steel as 2×10^5 N/mm ² and for brass as 1×10^5 N/mm ² .	9	L3	CO2	PO3

P21AU403		Page No 2			
b.	A steel tube of 30 mm external diameter and 25 mm internal diameter				
	encloses a gun metal rod of 20 mm diameter to which it is rigidly joined at				
	each end. The temperature of the whole assembly is raised to 140°C and the				
	nuts on the rod are then screwed lightly home on the ends of the tube.	9	L3	CO2	PO3
	Find the intensity of steel in the rod when the common temperature has	9	ĽJ	002	105
	fallen to 30°C. The value of E for steel and gum metal is $2.1 \times 10^5 \text{ N/mm}^2$				
	and 1 x 10^5 N/mm ² respectively. The linear co-efficient of expansion for				
	steel and gum metal is 12×10^{-6} per °C and 20×10^{-6} per °C respectively.				
c.	A plane element is subjected to stresses as shown in Fig. 3(c). Determine				
	principal stresses, maximum shear stress and their planes. Sketch the planes	9	L3	CO2	PO3
	determined.				
	UNIT - III	18			
4 a.	Draw the SFD and BMD for the simply supported beam shown in	9	L3	CO3	PO3
	Fig. 4 (a).				
b.	Draw the shear force and bending moment diagrams for the	0	1.0	601	DO2
	over-hanging beam of length 6 m carrying UDL of 2 kN/m over the entire	9	L3	CO3	PO3
	length. The beam is simply supported for a distance of 4 m.				
c.	Draw the Shear force and bending moment diagrams for the cantilever beam	9	L3	CO3	PO3
	shown in Fig. 4(c).	10			
5 a.	UNIT - IV Explain theory of simple or pure bending.	18 5	L2	CO4	PO2
	A cast iron beam is of I-section as shown in Fig. 5(b). The beam is simply	5	22	001	102
0.	supported on a span of 5 meter. If the tensile stress is not to exceed				
	20 N.mm^2 , find the safe uniformly load which the beam can carry. Find also	13	L3	CO4	PO3
	the maximum compressive stress.				
с.	A beam of length 6 m is simply supported at its ends and carries two point				
	loads of 48 kN and 40 kN at a distance of 1 m and 3 m respectively from the				
	left support. Find, deflection under each load, maximum deflection and the				
	point at which maximum deflection and the point at which maximum	13	L2	CO4	PO3
	deflection occurs.				
	Take $E = 2 \times 10^5 \text{ N/mm}^2$ and $I = 85 \times 10^6 \text{ mm}^4$.				
	UNIT - V	18			
6 a.	Determine the diameter of a solid steel shaft which will transmit 90 kW at				
	160 rpm. Also determine the length of the shaft if the twist must not exceed				
	1° over the entire length. The maximum shear stress is limited to 60 N/mm^2 .	9	L3	CO5	PO3
	Take the value of modulus of rigidity as 8 x 10^4 N/mm ² fixed. Take Young's				
	modulus for the joint as $2.1 \times 10^5 \text{ N/mm}^2$.				

Contd...3

ends hinged. Take Young's modulus as $2.1 \times 10^5 \text{ N/mm}^2$.

