U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

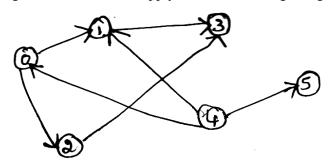
(An Autonomous Institution affiliated to VTU, Belagavi)

Fourth Semester, B.E. - Computer Science and Engineering Semester End Examination; Sep. / Oct. - 2023 Design and Analysis of Algorithms

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:


- CO1: Understand the basic concepts of various algorithmic techniques.
- CO2: Analyze the asymptotic performance of algorithms.
- CO3: Design solutions for the given problem using algorithmic technique.

Note: I) **PART - A** is compulsory. **Two** marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

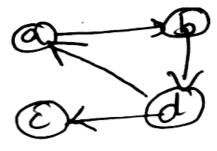
Q. No.	. Questions		BLs	COs	POs
	I : PART - A	10			
1 a.	List the important problem types in algorithm.	2	L1	CO1	PO1,2
b.	Write the recurrence relation for worst case time efficiency of quick sort.	2	L1	CO1,2	PO1,2
c.	Explain dynamic programming.	2	L1	CO3	PO1,2
d.	Write the differences between BFS and DFS.	2	L1	CO1,3	PO1,2,3
e.	Explain Greedy technique in brief.	2	L1	CO1,3	PO1,2,3
	II : PART - B	90			
	UNIT - I	18			
2 a.	What is an algorithm? Explain the fundamentals of algorithmic problem solving with a neat diagram.	9	L2	CO1,3	PO1,2,3
b.	Design an algorithm to multiply two matrices and obtain its time complexity.	9	L3	CO1,2,3	3PO1,2,3
c.	Explain the different asymptotic notations used in analyzing an algorithm with example.	9	L2	CO1,2	PO1,2
	UNIT - II	18			
3 a.	Write an algorithm for string matching using Brute force technique.				
	Explain the working for the given example.				
	Main string: analysis and design	9	L3	CO1,3	PO1,2,3
	Pattern string: design				
	Replacement string: XXXXXX				
b.	Write an algorithm to sort the array elements in increasing order using insertion sort and explain the working with an example.	9	L4	CO1,2,3	3PO1,2,3

c. Write an algorithm for DFS and apply the same for the given graph.

9 L3 CO1,3 PO1,2,3

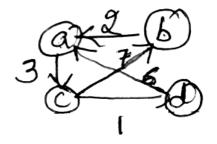
UNIT-III

18


- 4 a. Write an algorithm for quick sort. Analyze its worst case time complexity.
- 9 L4 CO1,2,3PO1,2,3
- b. Explain Strassen's matrix multiplication and analyze its time complexity.
- 9 L4 CO1,2,3PO1,2,3
- c. Explain max heap with an example and show the steps to sort the array elements 15, 20, 7, 9, 30 using heap sort.
- 9 L3 CO1,2,3PO1,2,3

5 a. Write an algorithm for Knapsack problem using dynamic programming and solve the following instance. Knapsack capacity M = 5.

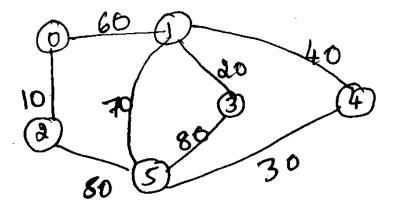
Item	Weight	Value		
1	2	\$12		
2	1	\$10		
3	3	\$20		
4	2	\$15		


9 L3 CO1,2,3PO1,2,3

b. Write Warshall's algorithm and apply the Warshall's algorithm for the given graph to find out the transitive closure.

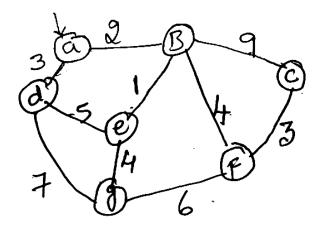
9 L4 CO1,2,3PO1,2,3

c. Design Floyd's algorithm to find all-pairs shortest path using dynamic programming and apply the same for the given graph.



9 L3 CO1,2,3PO1,2,3

18


- V

6 a. Write prim's algorithm to find the minimum spanning tree and apply the same for the given graph and obtain the minimum spanning tree.

9 L3 CO1,2,3PO1,2,3

b. Write Dijkstra's algorithm to find the single source shortest distance between the vertices and apply the same for the given graph.

9 L3 CO1,2,3PO1,2,3

Explain Backtracking problem. Solve the following Knapsack problem using branch and bound given the following data:
Capacity of Knapsack, M = 10.

item	weight	value	value weight
1	4	\$40	10
2	7	\$42	6
3	5	\$25	5
4	3	\$12	4

* * * *

9 L4 CO1,2,3PO1,2,3