

P21CS404			Page No 2		
c.	Analyze use of the following in ER diagram with an example:				
	i) Weak entity type				
	ii) Participation constraint	0	1.0	004	
	iii) Cardinality ratio	9	L3	CO4	PO1,2,3,12
	iv) Recursive relationship				
	v) Specialization				
	UNIT - II	18			
3 a.	Consider the employee database, where the primary keys are underlined.				
	Employee (empname, street, city, empid)				
	Works (empid, companyname, salary)				
	Company (<u>companyname</u> , city)				
	Manages(empid, department)				
	Give an expression in the relational algebra for each request.				
	i) Find the name of all employees who work for first bank corporation.	9	L3	CO1	PO1
	ii) Find the names, street addresses and cities of residence of all				
	employees who work for first bank corporation and earn more				
	than 200000 per annum.				
	iii) Find the names of all employees in this database who live in the				
	same city as the company for which they work.				
	iv) Find the names of all employees who earn more than every				
	employees of small bank corporation.				
b.	Consider the following schema diagram and write relational algebra				
	expression for the requirements.				
	Suppliers (sid: integer, sName: string, address: string)				
	Parts (pid: integer, pname : string, colour: string)				
	Catalog (sid: integer, pid : integer, cost: real)				
	i) Find the name of suppliers who supply some red parts	9	L3	CO1	PO1
	ii) Find all prices for parts that are red or green (a part may have				
	different prices from different manufacturers)				
	iii) Find the sIDs of all suppliers who supply a part that is red or green				
	iv) Find the sIDs of all suppliers who supply a part that is red & green				
	v) Find the name of all suppliers who supply a part that is red or green				
c.	Discuss about the categories of attributes in entity relationship model with example for each.	9	L	CO	PO1

P21CS404

	UNIT - III	18		
4 a.	The following relations keeps track of airline flight information:			
	Flight (flno: integer, from: string, to: string, distance: integer, departs:			
	time, arrives : time, price: real)			
	Aircraft (aid : integer, aname: string, cruisingrange: integer)			
	Certified (eid: integer, aid: integer)			
	Employees (eid: integer, ename: string, salary: integer)			
	Write each of the following queries in SQL;			
	i) Find the names of aircraft such that all pilots certified to operate	9	L3	CO4 PO1,2,3,4,5,9,12
	them have salaries more than \$800000.			
	ii) Find the names of pilots whose salary is less than the price of the			
	cheapest route from Los Angeles to Honolulu.			
	iii) For all aircraft with cruising range over 1000 miles, find the name			
	of the aircraft and the average salary of all pilots certified for this			
	aircraft.			
	iv) Find the names of pilots certified for some Boeing aircraft.			
b.	Consider the following relations for an order processing database			
	applications in a company CUSTOMER(<u>cust:</u> int, cname: string, city: string)			
	ORDER(order:int, odate:date, cust:int, ord-amt:int)			
	ORDER-ITEM(<u>order</u> :int, <u>item</u> :int, qty:int)			
	ITEM(<u>item</u> :int, unitprice:int)			
	SHIPMENT(order:int, warehouse:int, ship-date;date)			
	WAREHOUSE(<u>warehouse</u> :int, city:string)			
	Write each of the following queries in SQL;	9	L3	CO4 PO1,2,3,4,5,9,12
	i) Produce a listing: CUSTNAME, # of orders, AVG_ORDER_AMT,			
	where the middle column is the total no. of orders by the customer			
	and the last column is the average order amount for that customer.			
	ii) List the order # for orders that were shipped from all warehouses			
	that the company has in a specified city.			
	iii) Demonstrate how you delete item # 10 from ITEM table and make			
	the field null in the ORDER_ITEM table.			
c.	Consider the following database of student enrollment in courses and			
	books adopted for each course:			
	STUDENT(<u>regno</u> : string, name:string, major:string, bdate;date)			
	COURSE (<u>course</u> :int, cname:string, dept:string)	9 I	L3	CO4 PO1,2,3,4,5,9,12
	ENROLL(regno:string, course:int, marks:int)			

P21CS	6404		j	Page N	lo 4
	BOOK_ADOPTION(course:int, sem:int, book-ISBN:int)				
	TEXT(book-ISBN:int, book-title:string, publisher: string, author:				
	string)				
	Write each of the following queries in SQL;				
	i) Demonstrate how you add a new text book to the database and				
	make this book be adopted by some department				
	ii) Produce a list of text books in alphabetical order for courses				
	offered by CS department that use more than two books.				
	iii) List any department that has all its adopted books published by a				
	specific publisher.				
	UNIT - IV	18			
5 a.	Why insertion, deletion and modification anomalies are considered	9	12	CO3	PO1 2 2
	bad? Illustrate with example.	9	L2	005	PO1,2,3
b.	Consider the relation schema R(A, B, C, D, E, F) and functional				
	dependencies A->B, C->DF, AC->E, D->F. What is the primary key	9	1.2	CO3	PO1,2,3
	of this relation R? What is its highest normal form? Preserving the	9	L3	COS	PO1,2,5
	dependency, decompose R into third normal form.				
c.	With a suitable example, explain properties of Relational	9	10	CO3	PO1,2,3
	Decompositions.	9	L2	COS	PO1,2,5
	UNIT - V	18			
6 a.	Explain the multivalued dependency and join dependency with	9	L2	CO3	PO1,2,3
h	example. Consider the three transactions T1, T2 and T3 and the schedules S1				
υ.	and S2 given below. Draw the serializability (precedence) graphs for				
	S1 and S2 and state whether each schedule is serializable or not. If a				
	schedule is serializable, write down the equivalent serial schedule(s).				
	T1:r1(X); r1(Z); w1(X);				
	T2:r2(Z); r2(Y); w2(Z); w2(Y);	9	13	CO1	PO1
	T3:r3(X); r3(Y); w3(Y);	,	Ц3	001	101
	S1: r1(X); r2(Z); r1(Z); r3(X); r3(Y); w1(X); w3(Y); r2(Y); w2(Z);				
	w2(Y);				
	S2: r1(X); r2(Z); r3(X); r1(Z); r2(Y); r3(Y); w1(X); w2(Z); w3(Y);				
	w2(Y);				
c.	Check whether given schedule is serializable or not using precedence				
	graph. Explain with algorithm.	-			
	S1:R1(X) R2(Z) R1(Z) R3(X) R3(Y)	9	L3	CO1	PO1
	W1(X) = W3(Y) = R2(Y) = W2(Z) = W2(Y)				
	$\psi \psi \psi \psi$				

* * * *