U.S.N

P.E.S. College of Engineering, Mandya - 571 401

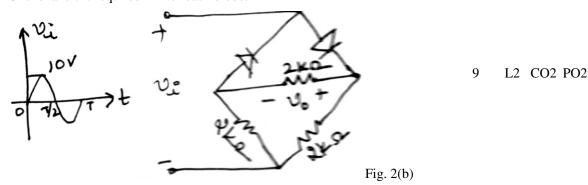
(An Autonomous Institution affiliated to VTU, Belagavi)

First / Second Semester, B.E. - Semester End Examination; Sep. / Oct. - 2023 Basic Electronic Devices and Circuits

(Common to All Branches)

Time: 3 hrs Max. Marks: 100

Course Outcomes


The Students will be able to:

- CO1: Apply the knowledge of physics and mathematics to understand the principle of devices, number system, circuits and communication system.
- CO2: Analyze the analog and digital circuits.
- CO3: Design circuits for rectification, regulation, amplification and filtering.
- CO4: Design the combination logic circuit.

Note: I) PART - A is compulsory. Two marks for each question.

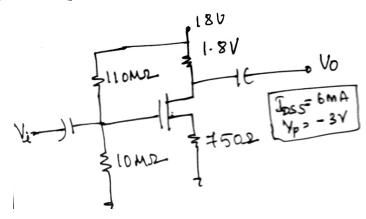
II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

11) FART - B. Answer any <u>Two</u> sub-questions (from a, b, c) for a maximum of 18 marks from each unit.					
Q. No.	Questions	Marks	BLs	COs	POs
	I : PART - A	10			
1 a.	Mention the applications of Zener diodes.	2	L1	CO1	PO1
b.	Draw the structure of P-channel depletion type of MOSFET.	2	L1	CO1	PO1
c.	List the characteristics of OP-Amp.	2	L1	CO1	PO1
d.	Perform 1010X111 and write the resulting output.	2	L2	CO4	PO2
e.	Mention difference between FM and AM.	2	L1	CO5	PO2
	II : PART - B	90			
	UNIT - I	18			
2 a.	Define Q point. Explain load line analysis with relevant diagrams and equations.	9	L2	CO2	PO2
b.	Determine the output waveform for the network shown in Fig. 2(b) and obtain the				
	output DC level and the required PIV of each diode.				

- c. Explain Zener diode as voltage regulate for the following cases:
 - i) V_i and R_L fixed ii) Fixed V_i and variable R_L

UNIT - II

3 a. Explain basic construction and operation of n-channel enhancement type MOSFET with necessary diagrams and equations.


9 L2 CO1 PO1

L2 CO2 PO2

9

18

b. For the n-channel depletion-type MOSFET shown in Fig. 3(b), determine the following i) I_{DQ} and ii) V_{GSQ}

9 L3 CO2 PO2

- c. Explain the E-MOSFET voltage divider configuration with neat circuit diagram and AC equivalent configuration. Also determine the following for the same:
- 9 L2 CO2 PO2

i) Z_i and Z_o ii) G_m iii) A_V

UNIT - III

18

Fig. 3(b)

- 4 a. Derive an expression for the voltage gain of an inverting Op-Amp with necessary diagram and equations.
- 9 L2 CO3 PO2
- b. Explain the following with respect to Op-Amp with necessary circuit diagrams and equations.
- 9 L2 CO3 PO2
- i) Current Controlled Voltage Source ii) Differentiator iii) Ist order High Pass Filter
- c. Show the connection of three Op-Amp stages using an LM348 IC to provide output that are 10, 20 and 50 times larger than the input use feedback resistor of $R_f = 500 \text{ k}\Omega$ in all stages.
- 9 L2 CO3 PO2

UNIT-IV

18

18

- 5 a. Realize the following using only NAND;
 - i) OR ii) AND iii) XOR

9 L2 CO4 PO2

- b. Compute the following:
 - i) $(54.325)_{10} = ()_2 = ()_8$
 - ii) Perform $(1011)_2 (0111)_2$ using 2's compliment

- 9 L2 CO4 PO2
- iii) Simplify and realize using basic gates Y = BCD + (B + C + D) + BCDE
- c. Design and implement full adder using two half adders.

9 L2 CO4 PO2

UNIT - V

- 6 a. Explain Amplitude Modulation (AM) with the help of relevant sketch, waveforms and equations.
- 9 L2 CO5 PO2
- b. List the characteristics of good receiver also explain super heterodyne receiver with neat block diagram.
- 9 L2 CO5 PO2
- c. Explain the basic block diagram of Optical Fiber Communication (OFC) along with its applications.
- 9 L2 CO5 PO2