E									
P.E.S. College of Engineering, Mandya - 571 401									
(An Autonomous Institution affiliated to VTU, Belagavi)									
Fourth Semester, B.E Electronics and Communication Engineering									
Semester End Examination; Sep. / Oct 2023									
Analog and Digital Communication Time: 3 hrs Max. Marks: 100									
Course Outcomes									
The Students will be able to:									
CO1: Apply the basic knowledge of mathematics for Formulation and analysis of Analog and Digital communication system.									
<i>CO2:</i>	Analyze various aspects of sampling, quantizing, encoding and SNR of	of Analo	g/Dig	ital si	gnal				
	iodulation/transmission and demodulation/reception techniques nalyze digital techniques like pulse shaping, coding and other digital communicat	ion syste	ms						
CO4: Identify and Analyze different coherent receiver for digital modulation, Eye diagram, ISI and other digital									
communication signaling techniques. CO5: Apply appropriate techniques, resources and modern tools to examine and design elementary communication system for various modulation schemes.									
Note: 1	PART - A is compulsory. Two marks for each question.								
) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 m	Ū							
Q. No.	Questions	Marks	BLs	COs	POs				
1 a.	I : PART - A Define Vestigial Side Band (VSB) modulation.	10 2	L1	CO2	PO3				
b.	Mention relationship between the FM and PM modulation.	2	L1	CO2					
с.	List the advantages of digital communication.	2	L1	CO1					
с. d.	Mention the role of scrambling in digital data transmission.	2	L1	CO4					
и. е.	List the difference between coherent and non-coherent receiver.	2	L1	CO4					
0.	II : PART - B	2 90		001	105				
	UNIT - I	18							
2 a.	Derive the time and frequency domain Amplitude Modulation (AM)		1.0	GO2	DOA				
	equations with neat waveforms.	9	L2	CO2	PO3				
b.	Analyze the Bridge Modulator and Ring Modulator for DSBSC with	0		a a	DOA				
	relevant equations and waveforms	9	L3	CO2	PO3				
c.	A signal $x(t)$ described by,								
	$x(t) = (3/2)cos(190 \times 10^{3} \pi t) + 5cos(200 \times 10^{3} \pi t) + (3/2)cos(210 \times 10^{3} \pi t)$								
	i) Show that $x(t)$ is an AM signal	-							
	ii) Determine the ratio of Ps / Pc where Ps is the power in sidebands and	9	L2	CO1	PO2				
	<i>Pc</i> is the power in the carrier.								
	iii) What is the power efficiency (η) in the AM signal?								
	UNIT - II	18							
3 a.	Show that Wide Band FM (WBFM) has infinite bandwidth.	9	L3	CO1	PO2				
b.	Explain the PLL method of FM demodulation.	9	L2	CO2	PO3				
c.	Illustrate the working of superheterodyne receiver.	9	L2	CO1	PO2				

Contd...2

P21EC402			Page No 2	
	UNIT - III	18		
4 a.	Define sampling theorem and illustrate ideal sampling method in time and frequency domain.	9	L2 CO2 I	PO3
b.	With a neat block diagram, explain Pulse Code Modulation.	9	L2 CO2 I	PO3
c.	Analyse A-law and μ law commanding techniques for Non-uniform Quantization.	9	L4 CO3 I	PO2
	UNIT - IV	18		
5 a.	With a neat block diagram and equations, explain Adaptive Delta Modulation.	9	L2 CO4 I	PO3
b.	Analyze the binary sequence 101011100 and draw the digital format waveforms corresponding to; i) Unipolar NRZ ii) Polar NRZ iii) Polar RZ iv) Bipolar NRZ	9	L3 CO3 I	PO2
	v) Manchestervi) Bipolar RZvii) Unipolar RZ			
с.	With the block diagram, explain DPCM transmitter and receiver.	9	L2 CO2 I	PO3
	UNIT - V	18		
6 a.	With the necessary diagram and equations, explain M-ary PSK and QAM.	9	L2 CO2 I	PO2
b.	Derive an expression for optimum receiver filter matched filter and explain the same.	9	L3 CO4 I	PO3
c.	With a block diagram, explain optimum coherent detection of FSK signals.	9	L2 CO2 I	PO3

* * * *