

The Students will be able to:

CO1: Apply the knowledge of physics and Vector calculus to understand EM fields and waves.

CO2: Analyze Electric fields, magnetic fields and EM waves and its effect in various charge distribution of medium.

CO3: Compute the electric and magnetic field potentials due to different charge distributions and boundary conditions.

CO4: Discuss time-varying electromagnetic fields and waves as governed by Maxwell's equations.

CO5: Examine the effects and losses of medium on wave and various parameters influencing wave propagation.

<u>Note:</u> I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

Q. No.	Questions	Marks	BLs	COs	POs
	I : PART - A	10			
1 a.	Define electric field intensity and electric flux density.	2	L2	CO2	PO1
b.	Define current density.	2	L2	CO3	PO2
с.	Write the equation of Curl of a vector in rectangular coordinate systems.	2	L2	CO4	PO2
d.	Define critical frequency and MUF.	2	L2	CO2	PO1
e.	Define Poynting vector.	2	L2	CO2	PO2
	II : PART - B	90			
	UNIT - I	18			
2 a.	Derive the equations for electric field intensity and electric flux density due to infinite line charge using Gauss's law.	9	L2	CO2	PO2
b	State and prove Gauss's law. Mention the nature of Gaussian surface.	9	L2	CO2	PO2
c.	Given that $\overline{D} = \frac{5r^2}{4} \stackrel{\wedge}{a_r} c/m^2$. Evaluate both the sides of divergence theorem for the volume enclosed by $r = 4 m$ and $\theta = \frac{\pi}{4}$.	9	L3	CO2	PO3
	UNIT - II	18			
3 a.	State and prove uniqueness theorem.	9	L3	CO3	PO3
b.	Obtain the point form of continuity equation.	9	L4	CO3	PO2
с.	Establish the relationship between E and V . Find the E and V for the				
	potential field at $P(2, 30^{\circ}, 1)$	9	L4	CO3	PO3
	$V = \frac{\cos 2\phi}{r}$				

P21EC403			Page No 2		
	UNIT - III	18	L2	CO2	PO1
4 a.	Derive an expression for the magnetic field intensity at a point				
	due to current carrying straight conductor of infinite length using	9	L2	CO2	PO2
	Biot-Sevart's law.				
b.	State and explain Lorentz force equation. Find the force on the				
	conductor, if the field in the region is $\vec{B} = 0.005 \ \hat{a}_x$ Tesla, if a conductor	4+5	L2	CO2	PO3
	4 m long lies along y-axis with a current of 10 A in \hat{a}_y direction.				
c.	State and explain Stoke's theorem.	9	L2	CO2	PO3
	UNIT - IV	18			
5 a.	List all Maxwell's equations in integral and differential form.	9	L2	CO4	PO2
b.	State and prove Poynting theorem.	9	L2	CO4	PO2
c.	Derive the solution of wave equation in free space.	9	L2	CO4	PO2
	UNIT - V	18			
6 a.	Briefly explain the concept of refraction and reflection of sky waves by	9	L2	CO5	PO2
	ionosphere and derive the relation between MUF and the skip distance.			005	102
b.	Explain the tilt of wave front due to ground wave propagation.	9	L2	CO5	PO2
c.	Explain the following with respect to sky wave propagation:				
	i) Critical frequency	9	L2	CO5	PO2
	ii) Virtual height	,		005	102
	iii) Skip distance				

* * * *