Max. Marks: 100

U.S.N

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi) Fourth Semester, B.E. - Electrical and Electronics Engineering

Semester End Examination; Sep. / Oct. - 2023

emester End Examination; Sep. / Oct. - 20.

DC and Synchronous Machines

Time: 3 hrs

The Students will be able to:

Course Outcomes

CO1: Apply the knowledge of basic electrical laws to study the operating principle of DC & Synchronous machines.

CO2: Analyze the performance characteristics of DC & Synchronous machines.

CO3: Apply the different testing methods to examine the desired parameters of *DC* & Synchronous machines. *CO4:* Compute numerical problems on *DC* & Synchronous machines.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

Q. No.	Questions	Marks	BLs	COs	POs
	I: PART - A	10			
1 a.	State the various effects of armature section.	2	L1	CO2	
b.	State and explain voltage equation of DC motor.	2	L1	CO2	PO2
c.	Mention the disadvantages of Swin burne or No load test.	2	L1	CO3	PO1
d.	What is synchronous speed of an alternator?	2	L1	CO2	PO2
e.	List the necessary conditions for synchronization ant alternator.	2	L1	CO2	PO2
	II : PART - B	90			
	UNIT - I	18			
2 a.	Derive an expression for calculating demagnetizing and cross	9	L3	CO2	PO2
	magnetizing Amp-Turns.				
b.	Explain the process of commutation in a DC machine and explain any	9	L2	CO2	PO2
	one method of improving commutation.	-		002	102
c.	A 4 pole DC shunt generator has 386 wave connected conductors.				
	The armature and shunt field resistances are1 Ω and 100 Ω respectively.	9	ТА	CO1,4	
	The flux per pole is 25 mwb and the speed is 1000 rpm. If the load	9	L4	CO1,4	PUI
	resistance is 40 Ω , calculate the armature current and output power.				
	UNIT - II	18			
3 a.	A 14.92 kW, 230 V, 1150 rpm, 4-pole DC shunt motor has a total				
	620 conductors arranged in two parallel paths and the armature circuit				
	resistance is 0.2 Ω . When it delivers rated power at rated speed, it draws				
	a line current of 74.8 amp and a field current of 3 amp. Calculate;	0	T 4	CO1 4	DO 1
	i) Flux per pole	9	L4	CO1,4	POI
	ii) The torque developed in armature				
	iii) The rotational losses				

iv) The total losses expressed as a percentage of power of input

P21EE403			Page No 2
b.	Discuss the following method to control the speed of DC shunt motor:	9	L2 CO2 PO2
	i) Flux control method ii) Voltage control method	7	12 002 102
c.	Explain the operation of a three point starter with a neat sketch.	9	L2 CO2 PO2
	UNIT - III	18	
4 a.	A 500 V, DC shunt motor when running on no load taken 5 Armature	9	
	resistance is 0.5 Ω and shunt field resistance is 250 $\Omega.$ Find the output in		L4 CO1,4 PO1
	kW and efficiency of the motor when running on full load and taking a	,	
	current of 50 A.		
b.	The Hopkinson's test in two DC shunt machines gave the following		
	results on full load. Line voltage = 220 V, line current excluding field		
	currents = 15 Amps. Motor armature current 72 Amps. The field currents	9	L4 CO1,4 PO1
	are 1.5 Amps and 1.0 Amp for generator and motor respectively. The		
	armature resistance of each machine is 0.2 Ω . Calculate efficiency of		
	each machine.		
c.	Explain how you will obtain the efficiency of a DC series machine by	9	L4 CO3 PO1
	conducting the field test.	10	
-	UNIT - IV	18	
5 a.	With neat sketches, explain the constructional feature of smooth cylindrical rotor and salient pole rotor of an alternator.	9	L2 CO2 PO2
b.	A 3- phase 8-pole, star connected alternator has the armature coils short		
0.	chorded by one slot. The coil span is 165 [•] electrical.		
		9	L3 CO1,4 PO1
	The alternator is driven at the speed of 750 rpm. If there are 12 conductors per slot and flux per pole is 50 mwb, calculate the value of	,	25 001,1101
	induced <i>emf</i> across the terminals.		
c.	Define voltage regulation. Explain the synchronous impedance method		
с.	of determination of voltage regulation of an alternator.	9	L3 CO2 PO2
	UNIT - V	18	
6 a.	State the methods of starting synchronous motor. Explain any two		
	in detail.	9	L2 CO2 PO2
b.	Discuss v-curves and inverted v-curves of synchronous motor with	0	
	diagrams.	9	L2 CO2 PO2
c.	A 6.6 kV 3-phase star connected synchronous motor takes a line current		
	of 50 A. The effective resistance and synchronous reactance per phase		
	are 1.5 Ω and 8 Ω respectively. Find;	9	L4 CO1,4 PO1
	i) The power supplied to the motor		
	ii) The induced <i>emf</i> for a p.f of 0.8 lag and lead.		
	ate ate ate		

* * * *