P21EE404 Page No... 1

U.S.N			

P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi)

Fourth Semester, B.E. - Electrical and Electronics Engineering Semester End Examination; Sep. / Oct. - 2023 Microcontrollers

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1: Apply basic computer knowledge to study the internal organization and instruction set of Microcontrollers.
- CO2: Analyze different instructions set to write ALP's on logical, data transfer and mathematical operations.
- CO3: Analyze timers, counters and serial/parallel communication to interface the 8051 Microcontroller.
- CO4: Execute ALP/ C Programs using Microcontroller kit /suitable simulation platform.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

Q. No.	Questions		BLs	COs	POs
	I : PART - A	10			
1 a.	Mention the internal RAM and ROM capacity of 8051.	2	L1	CO1	PO1
b.	Explain the following instructions:	2	L2	CO2	PO2
	i) MOVC A, @(A+DPTR) ii) MOV A, @DPTR	2	LL	CO2	102
c.	What happens if the GATE bit is set in TMOD register?	2	L1	CO3	PO2
d.	Define Baud rate.	2	L1	CO3	PO2
e.	What is ISR?	2	L1	CO3	PO2
	II : PART - B	90			
	UNIT - I	18			
2 a.	Sketch the functional block diagram of 8051 and write down only the	9	L2	CO1	PO1
	features of the same.		22	001	101
b.	i) Explain Von-Neumann and Harvard CPU architectures used in	6	L2	CO1	PO1
	microcontrollers				
	ii) Differentiate between RISC and CISC	3	L2	CO1	PO1
c.	i) With neat sketch, explain the internal memory structure of 8051.	6	L2	CO1	PO1
	ii) With example, explain PUSH and POP instructions.	3	L2	CO2	PO2
	UNIT - II	18			
3 a.	i) Explain different types of addressing modes with example.	6	L2	CO2	PO2
	ii) Mention the differences between AJMP and LJMP.		LL	CO2	102
b.	i) Move ten 8-bit data from location 45h to 54h, add 02 to each of them	6			
	and save the result in data RAM location 79h down to 70h.		L3	CO2	PO2
	ii) Show how -56 and -128 negative numbers are represented in 8051	3			

21EE404			Page No 2		
c.	i) Write an ALP to find the largest number in a group of ten numbers.	6			
	ii) What is subroutine? Mention the differences between LCALL and	3	L3	CO2	PO2
	ACALL instructions.	3			
	UNIT - III	18			
4 a.	i) Draw the TMOD register in 8051 and explain each bit.	6			
	ii) Mention the programming steps that are involved in MODE 1	3	L2	CO3	PO2
	operation.				
b.	I) Use timer '0' to generate a square wave of 50% duty cycle on P1.5 bit.	6	L3	CO3	PO2
	II) Indicate which mode and which timer are selected after the execution				
	of the following instructions:				
	i) MOV TMOD, #01h	3	L3	CO3	PO2
	ii) MOV TMOD, #20h				
	iii) MOV TMOD, #12h				
c.	Write ALP for 8051 such that LED connected to port, flash at 0.5 sec				
	rate when line P2.0 goes high. Use timer '0' for generating delay.	9	L3	CO3	PO2
	Assume $XTAL = 12 \text{ MHz}$.				
	UNIT - IV	18			
5 a.	i) Explain the methods involved in serial data communication.	6	1.0	CO2	DO2
	ii) Mention the differences between serial and parallel communication.	3	L2	CO3	PO2
b.	I) With neat flow chart, examine RS 232 handshaking signals.	6			
	II) With XTAL =11.0592 MHz, find the TH1 values needed to have		1.0	CO2	DO2
	following baud rates:	3	L2	CO3	PO2
	i) 9600 ii) 2400				
c.	i) Write a program to receive data which has been sent in serial form and				
	send it out to Port '0' in parallel form. Also save the data in RAM	6	L2	CO3	PO2
	location 60h.				
	ii) Mention the ways for doubling the baud rate in 8051.	3	L2	CO3	PO2
	UNIT - V	18			
6 a.	i) Mention the interrupt priority upon rest in 8051.	4			
	ii) Write a program that displays 'Y' at port 0 and 'N' at port 2 and also		1.0	CO2	DO2
	generate a square of 10 kHz, with timer 0 in mode 2 at port pin P1.2.	5	L2	CO3	PO2
	XTAL = 22 MHz.				
b.	Write a 'C' program to interface the stepper motor (Anti-clock wise	0	1.2	COS	DO2
	rotation) with 8051.	9	L3	CO3	PU2
c.	Write a 'C' program to interface the DC motor with 8051.	9	L3	CO3	PO2

P21EE404