

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi) Fourth Semester, B.E. - Electrical and Electronics Engineering Semester End Examination; Sep. / Oct. - 2023

Signals and DSP

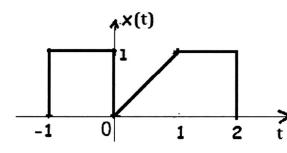
Time: 3 hrs		Max. Marks: 100
	Course Outcomes	

The Students will be able to:

CO1: Apply the knowledge of mathematics to visualize, Classify and perform computation on discrete time signals, systems and properties.

CO2: Analyze both continuous and discrete time systems in time, frequency and z-domains.

CO3: Design simple signal conditioning systems by using different techniques.


CO4: Execute MATLAB program to implement signal operations, processing and filter algorithms.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

Q. No.	Questions I : PART - A	Marks 10	BLs	COs	POs
1 a.	Compare energy and power signals.	2	L1	CO1	PO2
b.	Differentiate between casual and non-causal signals.	2	L1	CO1	PO2
c.	Find the inverse DFT of $Y(K) = \{1, 0, 1, 0\}.$	2	L1	CO1	PO2
d.	Arrange the 8 point sequence, $x(n) = \{1, 2, 3, 4, -1, -2, 3, -4\}$ in bit reversal order.	2	L2	CO2	PO2
e.	What are the requirements for an analog filter to be stable and causal?	2	L2	CO3	PO2
	II : PART - B UNIT - I	90 18			

2 a. Sketch the Even and Odd component of the signal X(t) shown below,

L3 CO1 PO2

9

b. Determine whether the following signals are periodic or not. If periodic, determine the fundamental period. 9 L3 CO1 PO2

ii) X[n] = Sin $\left(\frac{2\pi}{3}n\right)$ + Cos $\left(\frac{\pi}{2}n\right)$ i) $X(t) = Sin6\pi t + Cos5\pi t$

- c. Determine whether the system described by,

i)
$$y(t) = t^2 x(t)$$
 ii) $y(t) = x(3t)$
9 L3 CO1 PO2

Is: Linear or Non-Linear, Time-invariant or Time-Variant, Static or Dynamic and Causal or Non-Causal.

P21EE405			Ра	ge No.	2
UNIT - II		18			
3 a.	Define two sided Z-transform of a DT signal $X[n]$ and the inverse	9	12	CO2	PO2
	Z-transform of the signal $X(Z)$. Discuss the properties of ROCs.)	L2	002	102
b.	Find the Z-transform of $x(n) = -b^n u(-n-1)$. Find its ROC and plot	9	L3	CO2	DO2
	the same.	7	LJ	02	102
с.	Using partial fraction expansion method, find the discrete-time sequence				
	x(n) which has Z-transform, $X(Z) = \frac{Z(Z^2 - 4Z + 5)}{(Z - 3)(Z - 2)(Z - 1)}$ for; i) ROC $ Z > 3$ ii) ROC $ Z < 1$				
			12	CO2	DOJ
			L3	02	PO2
	iii) ROC 2 < Z < 3				
	iv) ROC 1< Z < 2				
	UNIT - III	18			
4 a.	State and prove;	9	L2	CO2	PO2
	i) Linearity Property ii) Circular time shift Property				
b.	Compute the 5 point DFT of the sequence, $x(n) = (1, 0, 1, 0, 1)$.	9	L2	CO2	PO2
с.	Compute 4 point circular convolution of the sequences given by	9	L2	CO2	PO2
	$x(n) = \{2, 3, 1, 1\}$ and $h(n) = \{1, 3, 5, 3\}$ using Stock ham's method.				
5	UNIT - IV	18 9	10	CON	DOJ
5 a.	Develop a radix-2 DIF-FFT algorithm for N point DFT.	9	L2	CO2	PO2
b.	Compute the 8 point DFT of the sequence $x(n) = \{1, 2, 3, 4, 4, 3, 2, 1\}$ by DIT EET algorithm	9	L2	CO2	PO2
2	DIT-FFT algorithm.				
с.	First five points of the eight point DFT of a real valued sequence is given V(0) = 0, $V(1) = 0$, $i(2)$, $V(2) = -i(2)$, $V(3) = 0$, D , $i = 0$.				
	by $X(0) = 0$, $X(1) = 2+j2$, $X(2) = -j4$, $X(3) = 2-j2$, $X(4) = 0$. Determine	9	L2	CO2	PO2
	the remaining points. Hence find the original sequence $X(n)$ using				
	decimation in frequency FFT algorithm.	10			
6 a.	UNIT - V A Butterworth low pass filter has to meet the following specifications:	18			
	i) Pass band gain, $K_p = -1$ dB at $\Omega_p = 4$ rad/sec.				
	ii) Stop band attenuation greater than or equal to 20dB at $\Omega_s = 8$ rad/sec	9	L2	CO3	PO3
	Determine the transfer function $H_a(s)$ of the lowest order Butterworth				
	filter to meet the above specifications.				
b.	For the analog filter with transfer function $H_a(S) = 4 / (S+2)(S+3)$,				
	determine digital IIR filter transfer function $H(Z)$ using impulse invariant	9	L3	CO3	PO3
	transformation. Assume $T = 2$ sec.				
c.	Derive expression for poles from the squared magnitude response of				
	Butterworth low pass filter.	9	L2	CO2	PO2
	<u>^</u>				