U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Fourth Semester, B.E. - Information Science and Engineering Semester End Examination; Sep. / Oct. - 2023 Theory of Computation

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

CO1: Understand the basic concept of Automata.

CO2: Apply the knowledge of Automata Theory for formal Languages

CO3: Analyze automata and their computational power to recognize languages

CO4: Design an automaton.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any Two sub questions (from a, b, c) for a Maximum of 18 marks from each unit

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.								
Q. No.	Questions I : PART - A	Marks 10	BLs	COs	POs			
1 a.	Write the applications of finite automata.	2	L2	CO1	PO1			
b.	Write the applications of regular expressions.	2	L2	CO2	PO1			
c.	Define Parse trees.	2	L1	CO3	PO1			
d.	Define PDA.	2	L1	CO2	PO1			
e.	Explain Turing machine model.	2	L2	CO1	PO1			
	II : PART - B	90						
	UNIT - I	18						
2 a.	List out the differences between DFA, NFA and \in -NFA.	9	L2	CO1	PO			
b.	Write DFA's for the following languages on $\Sigma = \{a, b\}$							
	i) Set of all strings ending with ab	9	L2	CO2	PO2			
	ii) Set of all strings not containing the substring aab		LL	CO2	102			
	iii) Set of all strings having "Exactly one a"							
c.	Consider the following \in -NFA.							
	$\delta \in a b c$							
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
	$q \{p\} \{q\} \{r\} \phi$	9	L3	CO4	PO2			
	$r \mid \{q\} \mid \{r\} \mid \phi \mid \{p\}$	9	L3	CO4	POZ			
	i) Compute ∈ -closure of each state							
	ii) Give all the strings of length three or less accepted by automata							

iii) Convert the automata to DFA

UNIT - II

3 a. State and prove pumping lemma for regular languages show that the language $L = \{a^n b^n | n \ge 0\}$ is not regular.

9 L4 CO2 PO2

b. Minimize the following DFA:

L3 CO2 PO2

L2 CO1

PO3

- c. Write regular expression for the following language:
 - i) $\{\omega \in \{a, b\}^*$ does not end with $ba\}$
 - ii) $\{\omega \in \{0, 1\}^* \text{ has substring } 001\}$
 - iii) $\{\omega \in \{0, 1\}^* |\omega| \text{ is even}\}$

UNIT - III 18

4 a. Consider the grammar:

S→aS|aSbS|∈

Is the above grammar ambiguous? Show that the string *aab* has two

L3 CO3 PO2

L3 CO2

L3 CO3

PO2

PO2

9

9

- i) Parse trees
- ii) Left most derivations
- iii) Rightmost derivations
- b. Convert the following grammar to CNF:

$$S\rightarrow 0A|1B$$

$$A \rightarrow 0AA|1S|1$$

 $B\rightarrow 1BB|0S|0$

c. Obtain a CFG to generate the following language:

i)
$$L = \{a^n b^{n+2} : n \ge 0\}$$

ii) L =
$$\{\omega\omega^{R} | \omega \in \{a, b\}^*\}$$

iii) $L = \{0^m 1^m 2^n | m \ge 1 \text{ and } n \ge 0\}$

UNIT - IV 18

5 a. Obtain PDA from the following grammar:

S→aABB|aAA

9 L3 CO2 PO2

 $B\rightarrow bBB|A$

 $C\rightarrow a$

b. Design a PDA to accept the language

L = $\{\omega | \omega \in (a+b)^* \text{ and } n_a(\omega) = n_b(\omega)\}$ and is the PDA is deterministic

L4 CO4 PO2,3

- c. Design a PDA to accept the language $L = \{\omega\omega^{R} | \omega \in (a+b)^{*}\}\$
- L4 CO4 PO1,2,3 9

P21IS402			Page No 3		
	UNIT - V	18			
6 a.	Obtain a Turing machine to accept the language $L = \{0^n 1^n n \ge 1\}$.	9	L3 CO4 PO1,2		
b.	Write short notes on the following:				
	i) Multi-tape Turing machines	9	L2 CO1 PO1.2		
	ii) Non-deterministic Turing machine		L2 CO1 FO1,2		
	iii) Undecidable problems				
c.	Explain the following terms:				
	i) Recursively Enumerable languages	9	L2 CO1 PO1.2		
	ii) Multi track Turing machine		L2 CO1 FO1,2		
	iii) Post correspondence problem				

* * * *