


| P21IS404 |                                                                                                |    | Page No 2 |             |            |
|----------|------------------------------------------------------------------------------------------------|----|-----------|-------------|------------|
| c.       | Analyze use of the following in ER diagram with an example:                                    |    |           |             |            |
|          | i) Weak entity type                                                                            |    |           |             |            |
|          | ii) Participation constraint                                                                   | 0  |           | <b>GO</b> ( |            |
|          | iii) Cardinality ratio                                                                         | 9  | L3        | CO4         | PO1,2,3,12 |
|          | iv) Recursive relationship                                                                     |    |           |             |            |
|          | v) Specialization                                                                              |    |           |             |            |
|          | UNIT - II                                                                                      | 18 |           |             |            |
| 3 a.     | Consider the employee database, where the primary keys are underlined.                         |    |           |             |            |
|          | Employee (empname, street, city, empid)                                                        |    |           |             |            |
|          | Works (empid, companyname, salary)                                                             |    |           |             |            |
|          | Company ( <u>companyname</u> , city)                                                           |    |           |             |            |
|          | Manages(empid, department)                                                                     |    |           |             |            |
|          | Give an expression in the relational algebra for each request.                                 |    |           |             |            |
|          | i) Find the name of all employees who work for first bank corporation.                         | 9  | L3        | CO1         | PO1        |
|          | ii) Find the names, street addresses and cities of residence of all                            |    |           |             |            |
|          | employees who work for first bank corporation and earn more                                    |    |           |             |            |
|          | than 200000 per annum.                                                                         |    |           |             |            |
|          | iii) Find the names of all employees in this database who live in the                          |    |           |             |            |
|          | same city as the company for which they work.                                                  |    |           |             |            |
|          | iv) Find the names of all employees who earn more than every                                   |    |           |             |            |
|          | employees of small bank corporation.                                                           |    |           |             |            |
| b.       | Consider the following schema diagram and write relational algebra                             |    |           |             |            |
|          | expression for the requirements.                                                               |    |           |             |            |
|          | Suppliers (sid: integer, sName: string, address: string)                                       |    |           |             |            |
|          | Parts (pid: integer, pname : string, colour: string)                                           |    |           |             |            |
|          | Catalog ( sid: integer, pid : integer, cost: real)                                             |    |           |             |            |
|          | i) Find the name of suppliers who supply some red parts                                        | 9  | L3        | CO1         | PO1        |
|          | ii) Find all prices for parts that are red or green (a part may have                           |    |           |             |            |
|          | different prices from different manufacturers)                                                 |    |           |             |            |
|          | iii) Find the sIDs of all suppliers who supply a part that is red or green                     |    |           |             |            |
|          | iv) Find the sIDs of all suppliers who supply a part that is red & green                       |    |           |             |            |
|          | v) Find the name of all suppliers who supply a part that is red or green                       |    |           |             |            |
| c.       | Discuss about the categories of attributes in entity relationship model with example for each. | 9  | L         | CO          | PO1        |
|          |                                                                                                |    |           |             |            |

## P21IS404

|      | UNIT - III                                                                            | 18  |    |                      |
|------|---------------------------------------------------------------------------------------|-----|----|----------------------|
| 4 a. | The following relations keeps track of airline flight information:                    |     |    |                      |
|      | Flight (flno: integer, from: string, to: string, distance: integer, departs:          |     |    |                      |
|      | time, arrives : time, price: real)                                                    |     |    |                      |
|      | Aircraft (aid : integer, aname: string, cruisingrange: integer)                       |     |    |                      |
|      | Certified (eid: integer, aid: integer)                                                |     |    |                      |
|      | Employees (eid: integer, ename: string, salary: integer)                              |     |    |                      |
|      | Write each of the following queries in SQL;                                           |     |    |                      |
|      | i) Find the names of aircraft such that all pilots certified to operate               | 9   | L3 | CO4 PO1,2,3,4,5,9,12 |
|      | them have salaries more than \$800000.                                                |     |    |                      |
|      | ii) Find the names of pilots whose salary is less than the price of the               |     |    |                      |
|      | cheapest route from Los Angeles to Honolulu.                                          |     |    |                      |
|      | iii) For all aircraft with cruising range over 1000 miles, find the name              |     |    |                      |
|      | of the aircraft and the average salary of all pilots certified for this               |     |    |                      |
|      | aircraft.                                                                             |     |    |                      |
|      | iv) Find the names of pilots certified for some Boeing aircraft.                      |     |    |                      |
| b.   | Consider the following relations for an order processing database                     |     |    |                      |
|      | applications in a company<br>CUSTOMER( <u>cust:</u> int, cname: string, city: string) |     |    |                      |
|      | ORDER(order:int, odate:date, cust:int, ord-amt:int)                                   |     |    |                      |
|      | ORDER-ITEM(order:int, item:int, qty:int)                                              |     |    |                      |
|      | ITEM( <u>item</u> :int, unitprice:int)                                                |     |    |                      |
|      | SHIPMENT(order:int, warehouse:int, ship-date;date)                                    |     |    |                      |
|      | WAREHOUSE(warehouse:int, city:string)                                                 |     |    |                      |
|      | Write each of the following queries in SQL;                                           | 9   | L3 | CO4 PO1,2,3,4,5,9,12 |
|      | i) Produce a listing: CUSTNAME, # of orders, AVG_ORDER_AMT,                           |     |    |                      |
|      | where the middle column is the total no. of orders by the customer                    |     |    |                      |
|      | and the last column is the average order amount for that customer.                    |     |    |                      |
|      | ii) List the order # for orders that were shipped from all warehouses                 |     |    |                      |
|      | that the company has in a specified city.                                             |     |    |                      |
|      | iii) Demonstrate how you delete item # 10 from ITEM table and make                    |     |    |                      |
|      | the field null in the ORDER_ITEM table.                                               |     |    |                      |
| c.   | Consider the following database of student enrollment in courses and                  |     |    |                      |
|      | books adopted for each course:                                                        |     |    |                      |
|      | STUDENT(regno: string, name:string, major:string, bdate;date)                         | 9 I | тэ |                      |
|      | COURSE ( <u>course</u> :int, cname:string, dept:string)                               |     | L3 | CO4 PO1,2,3,4,5,9,12 |
|      | ENROLL(regno:string, course:int, marks:int)                                           |     |    |                      |

Contd...4

| P21IS404 |                                                                                                                                                                                                    | Page No 4 |    |      |         |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----|------|---------|
|          | BOOK_ADOPTION(course:int, sem:int, book-ISBN:int)                                                                                                                                                  |           |    |      |         |
|          | TEXT(book-ISBN:int, book-title:string, publisher: string, author:                                                                                                                                  |           |    |      |         |
|          | string)                                                                                                                                                                                            |           |    |      |         |
|          | Write each of the following queries in SQL;                                                                                                                                                        |           |    |      |         |
|          | i) Demonstrate how you add a new text book to the database and                                                                                                                                     |           |    |      |         |
|          | make this book be adopted by some department                                                                                                                                                       |           |    |      |         |
|          | ii) Produce a list of text books in alphabetical order for courses                                                                                                                                 |           |    |      |         |
|          | offered by CS department that use more than two books.                                                                                                                                             |           |    |      |         |
|          | iii) List any department that has all its adopted books published by a                                                                                                                             |           |    |      |         |
|          | specific publisher.                                                                                                                                                                                |           |    |      |         |
|          | UNIT - IV                                                                                                                                                                                          | 18        |    |      |         |
| 5 a.     | Why insertion, deletion and modification anomalies are considered<br>bad? Illustrate with example.                                                                                                 | 9         | L2 | CO3  | PO1,2,3 |
| b.       | Consider the relation schema R(A, B, C, D, E, F) and functional dependencies A->B, C->DF, AC->E, D->F. What is the primary key of this relation R? What is its highest normal form? Preserving the | 9         | L3 | CO3  | PO1,2,3 |
|          | dependency, decompose R into third normal form.                                                                                                                                                    |           |    |      |         |
| c.       | With a suitable example, explain properties of Relational                                                                                                                                          | 9         | L2 | CO3  | PO1,2,3 |
|          | Decompositions.                                                                                                                                                                                    | 2         |    |      | - , ,-  |
|          | UNIT - V                                                                                                                                                                                           | 18        |    |      |         |
| 6 a.     | Explain the multivalued dependency and join dependency with example.                                                                                                                               | 9         | L2 | CO3  | PO1,2,3 |
| b.       | Consider the three transactions T1, T2 and T3 and the schedules S1                                                                                                                                 |           |    |      |         |
|          | and S2 given below. Draw the serializability (precedence) graphs for                                                                                                                               |           |    |      |         |
|          | S1 and S2 and state whether each schedule is serializable or not. If a                                                                                                                             |           |    |      |         |
|          | schedule is serializable, write down the equivalent serial schedule(s).                                                                                                                            |           |    |      |         |
|          | T1: $r1(X)$ ; $r1(Z)$ ; $w1(X)$ ;                                                                                                                                                                  | 0         |    | 0.01 |         |
|          | T2: $r_2(Z)$ ; $r_2(Y)$ ; $w_2(Z)$ ; $w_2(Y)$ ;                                                                                                                                                    | 9         | L3 | CO1  | PO1     |
|          | T3: $r_3(X)$ ; $r_3(Y)$ ; $w_3(Y)$ ;                                                                                                                                                               |           |    |      |         |
|          | S1: r1(X); r2(Z); r1(Z); r3(X); r3(Y); w1(X); w3(Y); r2(Y); w2(Z);<br>w2(Y);                                                                                                                       |           |    |      |         |
|          | S2: r1(X); r2(Z); r3(X); r1(Z); r2(Y); r3(Y);w1(X); w2(Z); w3(Y);                                                                                                                                  |           |    |      |         |
|          | w2(Y);                                                                                                                                                                                             |           |    |      |         |
| c.       | Check whether given schedule is serializable or not using precedence                                                                                                                               |           |    |      |         |
|          | graph. Explain with algorithm.                                                                                                                                                                     | 9         | L3 | CO1  | PO1     |
|          | $\begin{array}{ccccccc} S1: R1(X) & R2(Z) & R1(Z) & R3(X) & R3(Y) \\ W1(X) & W3(Y) & R2(Y) & W2(Z) & W2(Y) \end{array}$                                                                            |           |    |      |         |
|          |                                                                                                                                                                                                    |           |    |      |         |

\* \* \* \*