

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi) Fourth Semester, B.E. - Information Science and Engineering Semester End Examination; Sep. / Oct. - 2023 Operating System

Time: 3 hrs	operating System	Max. Marks: 100
	Course Outcomes	

The Students will be able to:

CO1: Apply Various Process Scheduling Algorithms, Disk Scheduling algorithms, Page replacement algorithms and Deadlock detection and avoidance techniques for providing Operating System functionalities.

CO2: Analyze and interpret operating system concepts to acquire a detailed understanding of the course.

CO3: Understand and explore the fundamental concepts of various operating system services.

CO4: Conduct experiments using Programming Language to demonstrate the Basic features of Operating System.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

Q.No.	Questions	Marks	BLs	COs	POs
	I : PART - A	10			
1 a.	Write all five states where process will be in the operating system.	2	L2	CO3	PO1
b.	Give reason, why threads are called as light weighted process?	2	L1	CO3	PO1
с.	What is critical section problem?		L1	CO3	PO1
d.	What are the necessary conditions to be hold simultaneously, which makes a system to be in deadlock state?	2	L1	CO3	PO1
e.	What is copy-on-write?	2	L1	CO3	PO1
	II : PART - B	90			
	UNIT - I	18			
2 a.	With a neat diagram, explain various services provided by operating system.	9	L2	CO3	PO1
b.	What are the different fundamental models of inter-process communication? Explain in detail.	9	L2	CO3	PO1
c.	Explain various computer systems architecture based on number of general purpose processors used.	9	L2	CO3	PO1
	UNIT - II	18			
3 a.	What are threads? Explain three common ways of establishing a	9	L2	CO3	PO1
1	relationship between user threads and kernel threads.				
b.	Explain how continguous allocation method to utilize the disk space effectively.	9	L2	CO3	PO1
c.	Explain the benefits of multithreaded programming.	9	L2	CO3	PO1

P21IS4	05	Page No 2		
	UNIT - III			
4 a.	Explain Peterson's solution for critical section problem and illustrate	9	L2	CO3 PO1
	with an example.	9	L2	CO3 FOI
b.	Consider the following set of process;			
	ProcessArrival Time (ms)Burst time (ms) P_0 06 P_1 13 P_2 24 P_3 25 P_4 31	9	L3	CO1 PO1,2,3
	ii) Calculate average turnaround time and average waiting time.			
с.	Consider the following set of process with the length of the CPU burst			
	given in millisecond and all the process arrive at 0 ms.			
	ProcessBurst timePriority P_1 22 P_2 11 P_3 84 P_4 42 P_5 53i) Draw a Gantt chart that illustrate that the execution of above processusing following scheduling algorithms;- Preemptive priority (higher priority, higher value)- Round Robin (Quantum = 2)ii) Calculate average waiting timeiii) Which of the algorithm results in the minimum average waiting time? Why?	9	L4	CO2 PO1,2,3
	UNIT - IV	18		
5 a.	Illustrate how to prevent the occurrence of deadlock in the system.	9	L3	CO1 PO1,2,3
b.	Consider the following snapshot of a system,			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	L3	CO1 PO1,2,3
	i) Illustrate that the system is in a safe state by demonstrating an order			
	in which the processes may complete.ii) If request from process P₁ arrives for (1, 1, 0, 0) and P₄ arrives for			
	(0, 0, 2, 0) than can the request be granted immediately.			

P21IS4	P21IS405		Page No 3		
c.	Explain difference between internal and external fragmentation.				
	Consider six memory partition of 300 KB, 600 KB, 350 KB, 200 KB,				
	750 KB and 125 KB(in order), how would the first fit, best-fit and	9	L4	CO2 PO1,2	
	worst-fit algorithms place processes of size 115 KB, 500 KB, 358 KB,	9	L/ 1	02 101,2	
	200 KB and 375 KB(in order)? Rank the algorithms in terms of how				
	efficiently they use memory.				
	UNIT - V	18			
6 a.	Consider the following page reference string:				
	7, 2, 3, 1, 2, 5, 3, 4, 6, 7, 7, 1, 0, 5, 4, 6, 2, 3, 0, 1				
	i) Assuming demand paging with three frames, how many page faults				
	would occur for the following replacement algorithms?	9	L3	CO1 PO1,2,3	
	LRU Replacement				
	FIFO Replacement				
	ii) Analyze which is efficient with respect to number of page faults.				
b.	What is demand paging? Illustrate the procedure for handling	9	L2	CO3 PO1	
	page fault.	2			
c.	Suppose that a disk drive has 5000 cylinders, numbered 0 to 4999.				
	The drive is currently serving a request at cylinder 2150, and the				
	previous request was at cylinder 1805. The queue of pending requests				
	in FIFO order is				
	2069, 1212, 2296, 2800, 544, 1618, 356, 1523, 4965, 3681				
	Starting from the current head position, what is the total distance (in	9	L3	CO1 PO1,2,3	
	cylinders) that the disk arm moves to satisfy all the pending request for				
	each of the following disk scheduling algorithm?				
	i) FCFS				
	ii) SSTF				
	iii)SCAN				
	* * * *				

* * * *