6	U.S.N						
E S T D	P.E.S. College of Engineering, Mandya - 5	71 40	1	1			
(An Autonomous Institution affiliated to VTU, Belagavi)							
Second Semester, B.E Semester End Examination; Sep. / Oct 2023							
	Engineering Mathematics - II (Common to All Branches)						
Time:		Μ	ax. M	larks:	100		
$Th \circ Ct$	Course Outcomes						
	dents will be able to: Explain linear system of equations, Eigen values/vectors similarity and diag	gonaliza	tion o	f matri	ices.		
CO2: Solve linear second order differential equations. Evaluate Laplace transforms and inverse Laplace							
transforms. CO3: Evaluate the Jacobians and the Taylor's series expansion and find the extreme value.							
CO4: Analyse the vector integration to use in the study of line integrals. CO5: Evaluate the multiple integrals and Evaluate application-oriented problems.							
	() PART - A is compulsory. Two marks for each question.	anka fu		la surait			
Q. No.	I) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 m Questions	Marks fro			POs		
	I: PART – A	10					
1 a.	Find the rank of $A = \begin{bmatrix} 1 & 5 \\ 3 & 15 \end{bmatrix}$	2	L1	CO1	PO1		
b.	Solve $y'' + 3y' + 2y = 0$.	2	L1	CO2	PO1		
c.	Find Laplace transform of $e^{-t}sin2t$.	2	L1	CO3	PO1		
d.	If $\vec{F} = \nabla (x^3 + y^3 + z^3 - 3xyz)$ find $div\vec{F}$.	2	L1	CO4	PO1		
e.	Evaluate $\int_0^1 \int_a^b xy dy dx$	2	L1	CO5	PO1		
	II : PART – B	90					
	UNIT – I	18					
2 a.	Investigate the values of μ and λ for the following system of						
	equations: $x + 2y + z = 8$, $2x + y + 3z = 13$, $3x + 4y - \lambda z = \mu$ may	9	L2	CO1	PO1		
	have i) Unique solution ii) Infinite solution iii) No solution.						
b.	Solve: $x + y + z = 1$, $3x + y - 3z = 15$, $x - 2y - 5z = 10$ using L-U	9	13	CO1	PO1		
	decomposition method.)	L3	COI	101		
c.	Reduce the matrix $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$ to a diagonal form.	9	L2	CO1	PO2		
	UNIT – II	18					
3 a.	i) Solve: $(D^3 + D^2 + 4D + 4)y = 0$	9	10	CO2			
	ii) Solve: $y'' + y' + y = x + 1$	ブ	LZ	02	rUI		
b.	Solve: $\frac{d^2y}{dx^2} + a^2y = \sec ax$, by the method of variation of parameter.	9	L2	CO2	PO1		
с.	Solve: $(1+x)^2 y'' + (1+x)y' + y - 2\sin[\log(1+x)]$	9	L3	CO2	PO2		

P21MA201		Page No 2	
UNIT – III	18		
4 a. Find the Laplace Transform of, (i) $t^2 \sin 2t$ (ii) $\frac{\cos \alpha t - \cos bt}{t}$	9	L2 CO3 PO2	
b. Find the Laplace transform of the triangular wave of period $2a$ given			
by, $f(t) = \begin{cases} E, & 0 < t < a \\ -E, & a < t < 2a \end{cases}$. Hence show that,	9	L3 CO3 PO2	
$L\{f(t)\} = \frac{E}{s} \tan h \left(\frac{as}{2}\right).$			
c. i) Find the inverse Laplace Transform of $\frac{s+4}{s^2+6s+25}$.			
ii) Solve $y'' + 4y' + 4y = e^{-t}$ with $y(0) = y'(0) = 0$ by using	9	L3 CO3 PO2	
Laplace Transform method.			
UNIT – IV	18		
5 a. Define Jacobian of functions in three variables. If $x - r \cos \theta$ and	9	L2 CO4 PO2	
$y = r \sin \theta$ prove that $JJ' = 1$.	-	22 001 102	
b. The temperature T at point (x, y, z) in space is $T = 400 xyz^2$. Find			
the highest temperature at the surface of the unit sphere	9	L3 CO4 PO2	
$x^2 + y^2 + z^2 - 1$			
c. Verify Stoke's theorem for $\vec{F} = (x^2 + y^2)i - 2xyj$ taken around the	9	L2 CO4 PO2	
rectangle bounded by the lines $x = 0, x = a, y = 0, y = b$.	,	22 001 102	
UNIT – V	18		
6 a. Evaluate $\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2-y^2}} \frac{dz dy dx}{\sqrt{1-x^2-y^2-z^2}}$.	9	L2 CO5 PO1	
b. Evaluate $\int_0^1 \int_{x^2}^x xy dy dx$ by changing the order of integration.	9	L2 CO5 PO2	
c. Show that $\int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{stu\theta}} \times \int_0^{\frac{\pi}{2}} \sqrt{sin\theta} d\theta = \pi$	9	L2 CO5 PO2	

* * * *